cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A237591 Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<=A003056(n)).

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

The original name was: Triangle read by rows: T(n,k) = A235791(n,k) - A235791(n,k+1), assuming that the virtual right border of triangle A235791 is A000004.
T(n,k) is also the length of the k-th segment in a zig-zag path on the first quadrant of the square grid, connecting the point (n, 0) with the point (m, m), starting with a segment in vertical direction, where m <= n.
Conjecture: the area of the polygon defined by the x-axis, this zig-zag path and the diagonal [(0, 0), (m, m)], is equal to A024916(n)/2, one half of the sum of all divisors of all positive integers <= n. Therefore the reflected polygon, which is adjacent to the y-axis, with the zig-zag path connecting the point (0, n) with the point (m, m), has the same property. And so on for each octant in the four quadrants.
For the representation of A024916 and A000203 we use two octants, for example: the first octant and the second octant, or the 6th octant and the 7th octant, etc., see A237593.
At least up to n = 128, two zig-zag paths never cross (checked by hand).
The finite sequence formed by the n-th row of triangle together with its mirror row gives the n-th row of triangle A237593.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> this sequence --> A237593 --> A239660 --> A237270 --> A237271.
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014. (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
From Hartmut F. W. Hoft, Apr 07 2014: (Start)
The row sum is A235791(n,1) - A235791(n,floor((sqrt(8n+1)-1)/2)+1) = n - 0.
Mathematica function has been written to check the conjecture as well as non-crossing zig-zag paths (Dyck paths rotated by 90 degrees) up through n=30000 (same applies to A237593). (End)
The n-th zig-zag path ending at the point (m, m), where m = A240542(n). - Omar E. Pol, Apr 16 2014
From Omar E. Pol, Aug 23 2015: (Start)
n is an odd prime if and only if T(n,2) = 1 + T(n-1,2) and T(n,k) = T(n-1,k) for the rest of the values of k.
The elements of the n-th row of triangle together with the elements of the n-th row of triangle A261350 give the n-th row of triangle A237593.
T(n,k) is also the area (or the number of cells) of the k-th vertical side at the n-th level (starting from the top) in the left hand part of the front view of the stepped pyramid described in A245092, see Example section.
(End)
From Omar E. Pol, Nov 19 2015: (Start)
T(n,k) is also the number of cells between the k-th and the (k+1)st line segments (from left to right) in the n-th row of the diagram as shown in Example section.
Note that the number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of odd divisors of n. (End)
Conjecture: the values f(n,k) in the n-th row of the triangle are either 1 or 2 for all k with ceiling((sqrt(4*n+1)-1)/2) <= k <= floor((sqrt(8*n+1)-1)/2) = r(n), the length of the n-th row, though the lower bound need not be minimal; tested through 2500000. See also A285356. - Hartmut F. W. Hoft, Apr 17 2017
Conjecture: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts. - Omar E. Pol, Apr 30 2017
From Omar E. Pol, Aug 31 2021: (Start)
It appears that T(n,2)/T(n,1) converges to 1/3.
It appears that T(n,3)/T(n,2) converges to 1/2.
It appears that T(n,4)/T(n,3) converges to 3/5.
It appears that T(n,5)/T(n,4) converges to 2/3. (End)
In other words: T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(n). - Omar E. Pol, Sep 08 2021

Examples

			Triangle begins:
   1;
   2;
   2, 1;
   3, 1;
   3, 2;
   4, 1, 1;
   4, 2, 1;
   5, 2, 1;
   5, 2, 2;
   6, 2, 1, 1;
   6, 3, 1, 1;
   7, 2, 2, 1;
   7, 3, 2, 1;
   8, 3, 1, 2;
   8, 3, 2, 1, 1;
   9, 3, 2, 1, 1;
   9, 4, 2, 1, 1;
  10, 3, 2, 2, 1;
  10, 4, 2, 2, 1;
  11, 4, 2, 1, 2;
  11, 4, 3, 1, 1, 1;
  12, 4, 2, 2, 1, 1;
  12, 5, 2, 2, 1, 1;
  13, 4, 3, 2, 1, 1;
  13, 5, 3, 1, 2, 1;
  14, 5, 2, 2, 2, 1;
  14, 5, 3, 2, 1, 2;
  15, 5, 3, 2, 1, 1, 1;
  ...
For n = 10 the 10th row of triangle A235791 is [10, 4, 2, 1] so row 10 is [6, 2, 1, 1].
From _Omar E. Pol_, Aug 23 2015: (Start)
Illustration of initial terms:
  Row                                                         _
   1                                                        _|1|
   2                                                      _|2 _|
   3                                                    _|2  |1|
   4                                                  _|3   _|1|
   5                                                _|3    |2 _|
   6                                              _|4     _|1|1|
   7                                            _|4      |2  |1|
   8                                          _|5       _|2 _|1|
   9                                        _|5        |2  |2 _|
  10                                      _|6         _|2  |1|1|
  11                                    _|6          |3   _|1|1|
  12                                  _|7           _|2  |2  |1|
  13                                _|7            |3    |2 _|1|
  14                              _|8             _|3   _|1|2 _|
  15                            _|8              |3    |2  |1|1|
  16                          _|9               _|3    |2  |1|1|
  17                        _|9                |4     _|2 _|1|1|
  18                      _|10                _|3    |2  |2  |1|
  19                    _|10                 |4      |2  |2 _|1|
  20                  _|11                  _|4     _|2  |1|2 _|
  21                _|11                   |4      |3   _|1|1|1|
  22              _|12                    _|4      |2  |2  |1|1|
  23            _|12                     |5       _|2  |2  |1|1|
  24          _|13                      _|4      |3    |2 _|1|1|
  25        _|13                       |5        |3   _|1|2  |1|
  26      _|14                        _|5       _|2  |2  |2 _|1|
  27    _|14                         |5        |3    |2  |1|2 _|
  28   |15                           |5        |3    |2  |1|1|1|
  ...
Also the diagram represents the left part of the front view of the pyramid described in A245092. For the other half front view see A261350. For more information about the pyramid and the symmetric representation of sigma see A237593. (End)
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
.                           _
                           | |
                           | |
                           | |
                           | |
                           | |
                      _ _ _| |
                    _|    _ _|
                  _|     |
                 |      _|
                 |  _ _|1
      _ _ _ _ _ _| |  2
     |_ _ _ _ _ _ _|2
            7
.
The lengths of the successive line segments from the first vertex to the central vertex of the largest Dyck path are [7, 2, 2, 1] respectively, the same as the 12th row of triangle. (End)
		

Crossrefs

Row n has length A003056(n) hence column k starts in row A000217(k).
Row sums give A000027.
Column 1 is A008619, n >= 1.
Right border gives A042974.

Programs

  • Mathematica
    row[n_]:= Floor[(Sqrt[8*n+1] -1)/2];  f[n_,k_]:= Ceiling[(n+1)/k-(k+1)/2] - Ceiling[(n+1)/(k+1)-(k+2)/2];
    Table[f[n,k],{n,1,50},{k,1,row[n]}]//Flatten
    (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
    row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]);} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = ceiling((n+1)/k - (k+1)/2) - ceiling((n+1)/(k+1) - (k+2)/2), for 1 <= n and 1 <= k <= floor((sqrt(8n+1)-1)/2). - Hartmut F. W. Hoft, Apr 07 2014

Extensions

3 more rows added by Omar E. Pol, Aug 23 2015
New name from a comment dated Apr 30 2017. - Omar E. Pol, Jun 18 2023

A245092 The even numbers (A005843) and the values of sigma function (A000203) interleaved.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 6, 7, 8, 6, 10, 12, 12, 8, 14, 15, 16, 13, 18, 18, 20, 12, 22, 28, 24, 14, 26, 24, 28, 24, 30, 31, 32, 18, 34, 39, 36, 20, 38, 42, 40, 32, 42, 36, 44, 24, 46, 60, 48, 31, 50, 42, 52, 40, 54, 56, 56, 30, 58, 72, 60, 32, 62, 63, 64, 48
Offset: 0

Views

Author

Omar E. Pol, Jul 15 2014

Keywords

Comments

Consider an irregular stepped pyramid with n steps. The base of the pyramid is equal to the symmetric representation of A024916(n), the sum of all divisors of all positive integers <= n. Two of the faces of the pyramid are the same as the representation of the n-th triangular numbers as a staircase. The total area of the pyramid is equal to 2*A024916(n) + A046092(n). The volume is equal to A175254(n). By definition a(2n-1) is A000203(n), the sum of divisors of n. Starting from the top a(2n-1) is also the total area of the horizontal part of the n-th step of the pyramid. By definition, a(2n) = A005843(n) = 2n. Starting from the top, a(2n) is also the total area of the irregular vertical part of the n-th step of the pyramid.
On the other hand the sequence also has a symmetric representation in two dimensions, see Example.
From Omar E. Pol, Dec 31 2016: (Start)
We can find the pyramid after the following sequences: A196020 --> A236104 --> A235791 --> A237591 --> A237593.
The structure of this infinite pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593 (see the links).
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1, hence the sum of the areas of the terraces at the m-th level equals A000203(m).
Note that the stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the pyramid see A237593 and all its related sequences. (End)

Examples

			Illustration of initial terms:
----------------------------------------------------------------------
a(n)                             Diagram
----------------------------------------------------------------------
0    _
1   |_|\ _
2    \ _| |\ _
3     |_ _| | |\ _
4      \ _ _|_| | |\ _
4       |_ _|  _| | | |\ _
6        \ _ _|  _| | | | |\ _
7         |_ _ _|  _|_| | | | |\ _
8          \ _ _ _|  _ _| | | | | |\ _
6           |_ _ _| |    _| | | | | | |\ _
10           \ _ _ _|  _|  _|_| | | | | | |\ _
12            |_ _ _ _|  _|  _ _| | | | | | | |\ _
12             \ _ _ _ _|  _|  _ _| | | | | | | | |\ _
8               |_ _ _ _| |  _|  _ _|_| | | | | | | | |\ _
14               \ _ _ _ _| |  _| |  _ _| | | | | | | | | |\ _
15                |_ _ _ _ _| |_ _| |  _ _| | | | | | | | | | |\ _
16                 \ _ _ _ _ _|  _ _|_|  _ _|_| | | | | | | | | | |\
13                  |_ _ _ _ _| |  _|  _|  _ _ _| | | | | | | | | | |
18                   \ _ _ _ _ _| |  _|  _|    _ _| | | | | | | | | |
18                    |_ _ _ _ _ _| |  _|     |  _ _|_| | | | | | | |
20                     \ _ _ _ _ _ _| |      _| |  _ _ _| | | | | | |
12                      |_ _ _ _ _ _| |  _ _|  _| |  _ _ _| | | | | |
22                       \ _ _ _ _ _ _| |  _ _|  _|_|  _ _ _|_| | | |
28                        |_ _ _ _ _ _ _| |  _ _|  _ _| |  _ _ _| | |
24                         \ _ _ _ _ _ _ _| |  _| |    _| |  _ _ _| |
14                          |_ _ _ _ _ _ _| | |  _|  _|  _| |  _ _ _|
26                           \ _ _ _ _ _ _ _| | |_ _|  _|  _| |
24                            |_ _ _ _ _ _ _ _| |  _ _|  _|  _|
28                             \ _ _ _ _ _ _ _ _| |  _ _|  _|
24                              |_ _ _ _ _ _ _ _| | |  _ _|
30                               \ _ _ _ _ _ _ _ _| | |
31                                |_ _ _ _ _ _ _ _ _| |
32                                 \ _ _ _ _ _ _ _ _ _|
...
a(n) is the total area of the n-th set of symmetric regions in the diagram.
.
From _Omar E. Pol_, Aug 21 2015: (Start)
The above structure contains a hidden pattern, simpler, as shown below:
Level                              _ _
1                                _| | |_
2                              _|  _|_  |_
3                            _|   | | |   |_
4                          _|    _| | |_    |_
5                        _|     |  _|_  |     |_
6                      _|      _| | | | |_      |_
7                    _|       |   | | |   |       |_
8                  _|        _|  _| | |_  |_        |_
9                _|         |   |  _|_  |   |         |_
10             _|          _|   | | | | |   |_          |_
11           _|           |    _| | | | |_    |           |_
12         _|            _|   |   | | |   |   |_            |_
13       _|             |     |  _| | |_  |     |             |_
14     _|              _|    _| |  _|_  | |_    |_              |_
15   _|               |     |   | | | | |   |     |               |_
16  |                 |     |   | | | | |   |     |                 |
...
The symmetric pattern emerges from the front view of the stepped pyramid.
Note that starting from this diagram A000203 is obtained as follows:
In the pyramid the area of the k-th vertical region in the n-th level on the front view is equal to A237593(n,k), and the sum of all areas of the vertical regions in the n-th level on the front view is equal to 2n.
The area of the k-th horizontal region in the n-th level is equal to A237270(n,k), and the sum of all areas of the horizontal regions in the n-th level is equal to sigma(n) = A000203(n). (End)
From _Omar E. Pol_, Dec 31 2016: (Start)
Illustration of the top view of the pyramid with 16 levels:
.
n   A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1      1   =      1      |_| | | | | | | | | | | | | | | |
2      3   =      3      |_ _|_| | | | | | | | | | | | | |
3      4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
4      7   =      7      |_ _ _|    _|_| | | | | | | | | |
5      6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
6     12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
7      8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
8     15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
9     13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
16    31   =     31      |_ _ _ _ _ _ _ _ _|
... (End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ@ n, n, DivisorSigma[1, (n + 1)/2]], {n, 0, 65}] (* or *)
    Transpose@ {Range[0, #, 2], DivisorSigma[1, #] & /@ Range[#/2 + 1]} &@ 65 // Flatten (* Michael De Vlieger, Dec 31 2016 *)
    With[{nn=70},Riffle[Range[0,nn,2],DivisorSigma[1,Range[nn/2]]]] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(2*n-1) + a(2n) = A224880(n).

A262626 Visible parts of the perspective view of the stepped pyramid whose structure essentially arises after the 90-degree-zig-zag folding of the isosceles triangle A237593.

Original entry on oeis.org

1, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 7, 3, 1, 1, 3, 3, 3, 3, 2, 2, 3, 12, 4, 1, 1, 1, 1, 4, 4, 4, 4, 2, 1, 1, 2, 4, 15, 5, 2, 1, 1, 2, 5, 5, 3, 5, 5, 2, 2, 2, 2, 5, 9, 9, 6, 2, 1, 1, 1, 1, 2, 6, 6, 6, 6, 3, 1, 1, 1, 1, 3, 6, 28, 7, 2, 2, 1, 1, 2, 2, 7, 7, 7, 7, 3, 2, 1, 1, 2, 3, 7, 12, 12, 8, 3, 1, 2, 2, 1, 3, 8, 8, 8, 8, 8, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 26 2015

Keywords

Comments

Also the rows of both triangles A237270 and A237593 interleaved.
Also, irregular triangle read by rows in which T(n,k) is the area of the k-th region (from left to right in ascending diagonal) of the n-th symmetric set of regions (from the top to the bottom in descending diagonal) in the two-dimensional diagram of the perspective view of the infinite stepped pyramid described in A245092 (see the diagram in the Links section).
The diagram of the symmetric representation of sigma is also the top view of the pyramid, see Links section. For more information about the diagram see also A237593 and A237270.
The number of cubes at the n-th level is also A024916(n), the sum of all divisors of all positive integers <= n.
Note that this pyramid is also a quarter of the pyramid described in A244050. Both pyramids have infinitely many levels.
Odd-indexed rows are also the rows of the irregular triangle A237270.
Even-indexed rows are also the rows of the triangle A237593.
Lengths of the odd-indexed rows are in A237271.
Lengths of the even-indexed rows give 2*A003056.
Row sums of the odd-indexed rows gives A000203, the sum of divisors function.
Row sums of the even-indexed rows give the positive even numbers (see A005843).
Row sums give A245092.
From the front view of the stepped pyramid emerges a geometric pattern which is related to A001227, the number of odd divisors of the positive integers.
The connection with the odd divisors of the positive integers is as follows: A261697 --> A261699 --> A237048 --> A235791 --> A237591 --> A237593 --> A237270 --> this sequence.

Examples

			Irregular triangle begins:
  1;
  1, 1;
  3;
  2, 2;
  2, 2;
  2, 1, 1, 2;
  7;
  3, 1, 1, 3;
  3, 3;
  3, 2, 2, 3;
  12;
  4, 1, 1, 1, 1, 4;
  4, 4;
  4, 2, 1, 1, 2, 4;
  15;
  5, 2, 1, 1, 2, 5;
  5, 3, 5;
  5, 2, 2, 2, 2, 5;
  9, 9;
  6, 2, 1, 1, 1, 1, 2, 6;
  6, 6;
  6, 3, 1, 1, 1, 1, 3, 6;
  28;
  7, 2, 2, 1, 1, 2, 2, 7;
  7, 7;
  7, 3, 2, 1, 1, 2, 3, 7;
  12, 12;
  8, 3, 1, 2, 2, 1, 3, 8;
  8, 8, 8;
  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  31;
  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  ...
Illustration of the odd-indexed rows of triangle as the diagram of the symmetric representation of sigma which is also the top view of the stepped pyramid:
.
   n  A000203    A237270    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
   1     1   =      1      |_| | | | | | | | | | | | | | | |
   2     3   =      3      |_ _|_| | | | | | | | | | | | | |
   3     4   =    2 + 2    |_ _|  _|_| | | | | | | | | | | |
   4     7   =      7      |_ _ _|    _|_| | | | | | | | | |
   5     6   =    3 + 3    |_ _ _|  _|  _ _|_| | | | | | | |
   6    12   =     12      |_ _ _ _|  _| |  _ _|_| | | | | |
   7     8   =    4 + 4    |_ _ _ _| |_ _|_|    _ _|_| | | |
   8    15   =     15      |_ _ _ _ _|  _|     |  _ _ _|_| |
   9    13   =  5 + 3 + 5  |_ _ _ _ _| |      _|_| |  _ _ _|
  10    18   =    9 + 9    |_ _ _ _ _ _|  _ _|    _| |
  11    12   =    6 + 6    |_ _ _ _ _ _| |  _|  _|  _|
  12    28   =     28      |_ _ _ _ _ _ _| |_ _|  _|
  13    14   =    7 + 7    |_ _ _ _ _ _ _| |  _ _|
  14    24   =   12 + 12   |_ _ _ _ _ _ _ _| |
  15    24   =  8 + 8 + 8  |_ _ _ _ _ _ _ _| |
  16    31   =     31      |_ _ _ _ _ _ _ _ _|
  ...
The above diagram arises from a simpler diagram as shown below.
Illustration of the even-indexed rows of triangle as the diagram of the deployed front view of the corner of the stepped pyramid:
.
.                                 A237593
Level                               _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
The diagram represents the first 16 levels of the pyramid.
The diagram of the isosceles triangle and the diagram of the top view of the pyramid shows the connection between the partitions into consecutive parts and the sum of divisors function (see also A286000 and A286001). - _Omar E. Pol_, Aug 28 2018
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - _Omar E. Pol_, Nov 09 2022
		

Crossrefs

Famous sequences that are visible in the stepped pyramid:
Cf. A000040 (prime numbers)......., for the characteristic shape see A346871.
Cf. A000079 (powers of 2)........., for the characteristic shape see A346872.
Cf. A000203 (sum of divisors)....., total area of the terraces in the n-th level.
Cf. A000217 (triangular numbers).., for the characteristic shape see A346873.
Cf. A000225 (Mersenne numbers)...., for a visualization see A346874.
Cf. A000384 (hexagonal numbers)..., for the characteristic shape see A346875.
Cf. A000396 (perfect numbers)....., for the characteristic shape see A346876.
Cf. A000668 (Mersenne primes)....., for a visualization see A346876.
Cf. A001097 (twin primes)........., for a visualization see A346871.
Cf. A001227 (# of odd divisors)..., number of subparts in the n-th level.
Cf. A002378 (oblong numbers)......, for a visualization see A346873.
Cf. A008586 (multiples of 4)......, perimeters of the successive levels.
Cf. A008588 (multiples of 6)......, for the characteristic shape see A224613.
Cf. A013661 (zeta(2))............., (area of the horizontal faces)/(n^2), n -> oo.
Cf. A014105 (second hexagonals)..., for the characteristic shape see A346864.
Cf. A067742 (# of middle divisors), # cells in the main diagonal in n-th level.
Apart from zeta(2) other constants that are related to the stepped pyramid are A072691, A353908, A354238.

A261699 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists positive terms interleaved with k-1 zeros, starting in row k(k+1)/2. If k is odd the positive terms of column k are k's, otherwise if k is even the positive terms of column k are the odd numbers greater than k in increasing order.

Original entry on oeis.org

1, 1, 1, 3, 1, 0, 1, 5, 1, 0, 3, 1, 7, 0, 1, 0, 0, 1, 9, 3, 1, 0, 0, 5, 1, 11, 0, 0, 1, 0, 3, 0, 1, 13, 0, 0, 1, 0, 0, 7, 1, 15, 3, 0, 5, 1, 0, 0, 0, 0, 1, 17, 0, 0, 0, 1, 0, 3, 9, 0, 1, 19, 0, 0, 0, 1, 0, 0, 0, 5, 1, 21, 3, 0, 0, 7, 1, 0, 0, 11, 0, 0, 1, 23, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 1, 25, 0, 0, 5, 0, 1, 0, 0, 13, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Sep 20 2015

Keywords

Comments

Conjecture: the positive terms in row n are the odd divisors of n.
Note that the elements appear with an unusual ordering, for example; row 45 is 1, 45, 3, 0, 5, 15, 0, 0, 9.
The positive terms give A261697.
Row n has length A003056(n) hence column k starts in row A000217(k).
The number of positive terms in row n is A001227(n).
The sum of row n is A000593(n).
The connection with the symmetric representation of sigma is as follows: A237048 --> A235791 --> A237591 --> A237593.
Proof of the conjecture: let n = 2^m*s*t with s and t odd. The property stated in A237048 verifies the conjecture with odd divisor k <= A003056(n) of n in position k and odd divisor t > A003056(n) in position 2^(m+1)*s. Therefore reading in row n the nonzero odd positions from left to right and then the nonzero even positions from right to left gives all odd divisors of n in increasing order. - Hartmut F. W. Hoft, Oct 25 2015
A237048 gives the signum function (A057427) of this sequence. - Omar E. Pol, Nov 14 2016
From Peter Munn, Jul 30 2017: (Start)
Each odd divisor d of n corresponds to n written as a sum of consecutive integers (n/d - (d-1)/2) .. (n/d + (d-1)/2). After canceling any corresponding negative and positive terms and deleting any zero term, the lower bound becomes abs(n/d - d/2) + 1/2, leaving k terms where k = n/d + d/2 - abs(n/d - d/2). It can be shown T(n,k) = d.
This sequence thereby defines a one to one relationship between odd divisors of n and partitions of n into k consecutive parts.
The relationship is expressed below using 4 sequences (with matching row lengths), starting with this one:
A261699(n,k) = d, the odd divisor.
A211343(n,k) = abs(n/d - d/2) + 1/2, smallest part.
A285914(n,k) = k, number of parts.
A286013(n,k) = n/d + (d-1)/2, largest part.
If no partition of n into k consecutive parts exists, the corresponding sequence terms are 0.
(End)

Examples

			Triangle begins:
1;
1;
1,  3;
1,  0;
1,  5;
1,  0,  3;
1,  7,  0;
1,  0,  0;
1,  9,  3;
1,  0,  0,  5;
1, 11,  0,  0;
1,  0,  3,  0;
1, 13,  0,  0;
1,  0,  0,  7;
1, 15,  3,  0,  5;
1,  0,  0,  0,  0;
1, 17,  0,  0,  0;
1,  0,  3,  9,  0;
1, 19,  0,  0,  0;
1,  0,  0,  0,  5;
1, 21,  3,  0,  0,  7;
1,  0,  0, 11,  0,  0;
1, 23,  0,  0,  0,  0;
1,  0,  3,  0,  0,  0;
1, 25,  0,  0,  5,  0;
1,  0,  0, 13,  0,  0;
1, 27,  3,  0,  0,  9;
1,  0,  0,  0,  0,  0,  7;
...
From _Omar E. Pol_, Dec 19 2016: (Start)
Illustration of initial terms in a right triangle whose structure is the same as the structure of A237591:
Row                                                         _
1                                                         _|1|
2                                                       _|1 _|
3                                                     _|1  |3|
4                                                   _|1   _|0|
5                                                 _|1    |5 _|
6                                               _|1     _|0|3|
7                                             _|1      |7  |0|
8                                           _|1       _|0 _|0|
9                                         _|1        |9  |3 _|
10                                      _|1         _|0  |0|5|
11                                    _|1          |11  _|0|0|
12                                  _|1           _|0  |3  |0|
13                                _|1            |13   |0 _|0|
14                              _|1             _|0   _|0|7 _|
15                            _|1              |15   |3  |0|5|
16                          _|1               _|0    |0  |0|0|
17                        _|1                |17    _|0 _|0|0|
18                      _|1                 _|0    |3  |9  |0|
19                    _|1                  |19     |0  |0 _|0|
20                  _|1                   _|0     _|0  |0|5 _|
21                _|1                    |21     |3   _|0|0|7|
22              _|1                     _|0      |0  |11 |0|0|
23            _|1                      |23      _|0  |0  |0|0|
24          _|1                       _|0      |3    |0 _|0|0|
25        _|1                        |25       |0   _|0|5  |0|
26      _|1                         _|0       _|0  |13 |0 _|0|
27    _|1                          |27       |3    |0  |0|9 _|
28   |1                            |0        |0    |0  |0|0|7|
... (End)
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_?OddQ] /; n == k (k + 1)/2 := k; T[n_, k_?OddQ] /; Mod[n - k (k + 1)/2, k] == 0 := k; T[n_, k_?EvenQ] /; n == k (k + 1)/2 := k + 1; T[n_, k_?EvenQ] /; Mod[n - k (k + 1)/2, k] == 0 := T[n - k, k] + 2; T[, ] = 0; Table[T[n, k], {n, 1, 26}, {k, 1, Floor[(Sqrt[1 + 8 n] - 1)/2]}] // Flatten (* Jean-François Alcover, Sep 21 2015 *)
    (* alternate definition using function a237048 *)
    T[n_, k_] := If[a237048[n, k] == 1, If[OddQ[k], k, 2n/k], 0] (* Hartmut F. W. Hoft, Oct 25 2015 *)

Formula

From Hartmut F. W. Hoft, Oct 25 2015: (Start)
T(n, k) = 2n/k, if A237048(n, k) = 1 and k even,
and in accordance with the definition:
T(n, k) = k, if A237048(n, k) = 1 and k odd,
T(n, k) = 0 otherwise; for k <= A003056(n).
(End)
For m >= 1, d >= 1 and odd, T(m*d, m + d/2 - abs(m - d/2)) = d. - Peter Munn, Jul 24 2017

A259176 Triangle read by rows T(n,k) in which row n lists the odd-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 1, 2, 5, 1, 2, 5, 2, 2, 6, 1, 1, 2, 6, 1, 1, 3, 7, 2, 1, 2, 7, 2, 1, 3, 8, 1, 2, 3, 8, 2, 1, 1, 3, 9, 2, 1, 1, 3, 9, 2, 1, 1, 4, 10, 2, 1, 2, 3, 10, 2, 1, 2, 4, 11, 2, 2, 1, 4, 11, 3, 1, 1, 1, 4, 12, 2, 1, 1, 2, 4, 12, 2, 1, 1, 2, 5, 13, 3, 1, 1, 2, 4, 13, 3, 2, 1, 1, 5, 14, 2, 2, 1, 2, 5
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
2, 1;
3, 1;
3, 2;
4, 1, 1;
4, 1, 2;
5, 1, 2;
5, 2, 2;
6, 1, 1, 2;
6, 1, 1, 3;
7, 2, 1, 2;
7, 2, 1, 3;
8, 1, 2, 3;
8, 2, 1, 1, 3;
9, 2, 1, 1, 3;
...
Illustration of initial terms (side view of the pyramid):
Row   _
1    |_|_
2    |_ _|_
3    |_ _|_|_
4    |_ _ _|_|_
5    |_ _ _|_ _|_
6    |_ _ _ _|_|_|_
7    |_ _ _ _|_|_ _|_
8    |_ _ _ _ _|_|_ _|_
9    |_ _ _ _ _|_ _|_ _|_
10   |_ _ _ _ _ _|_|_|_ _|_
11   |_ _ _ _ _ _|_|_|_ _ _|_
12   |_ _ _ _ _ _ _|_ _|_|_ _|_
13   |_ _ _ _ _ _ _|_ _|_|_ _ _|_
14   |_ _ _ _ _ _ _ _|_|_ _|_ _ _|_
15   |_ _ _ _ _ _ _ _|_ _|_|_|_ _ _|_
16   |_ _ _ _ _ _ _ _ _|_ _|_|_|_ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259177.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|_
3                             _|_ _| |_|
4                           _|_ _ _| |_|_
5                         _|_ _ _|  _|_ _|
6                       _|_ _ _ _| |_| |_|_
7                     _|_ _ _ _|   |_| |_ _|
8                   _|_ _ _ _ _|  _|_| |_ _|_
9                 _|_ _ _ _ _|   |_ _|_  |_ _|
10              _|_ _ _ _ _ _|   |_| |_| |_ _|_
11            _|_ _ _ _ _ _|    _|_| |_| |_ _ _|
12          _|_ _ _ _ _ _ _|   |_ _| |_|   |_ _|_
13        _|_ _ _ _ _ _ _|     |_ _| |_|_  |_ _ _|
14      _|_ _ _ _ _ _ _ _|    _|_|  _|_ _| |_ _ _|_
15    _|_ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
16   |_ _ _ _ _ _ _ _ _|     |_ _| |_| |_|   |_ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259177. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
For the mirror see A259177 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259176[n_, k_] := f[n, 2*k-1]
    TableForm[Table[a259176[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259176[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k - 1);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();)  \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k - 1)
    for n in range(1, 11): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021

A259177 Triangle read by rows T(n,k) in which row n lists the even-indexed terms of n-th row of triangle A237593.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 3, 1, 1, 4, 2, 1, 4, 2, 1, 5, 2, 2, 5, 2, 1, 1, 6, 3, 1, 1, 6, 2, 1, 2, 7, 3, 1, 2, 7, 3, 2, 1, 8, 3, 1, 1, 2, 8, 3, 1, 1, 2, 9, 4, 1, 1, 2, 9, 3, 2, 1, 2, 10, 4, 2, 1, 2, 10, 4, 1, 2, 2, 11, 4, 1, 1, 1, 3, 11, 4, 2, 1, 1, 2, 12, 5, 2, 1, 1, 2, 12, 4, 2, 1, 1, 3, 13, 5, 1, 1, 2, 3, 13, 5, 2, 1, 2, 2, 14
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2015

Keywords

Comments

Row n has length A003056(n) hence column k starts in row A000217(k).
Row n is a permutation of the n-th row of A237591 for some n, hence the sequence is a permutation of A237591.

Examples

			Written as an irregular triangle the sequence begins:
1;
2;
1, 2;
1, 3;
2, 3;
1, 1, 4;
2, 1, 4;
2, 1, 5;
2, 2, 5;
2, 1, 1, 6;
3, 1, 1, 6;
2, 1, 2, 7;
3, 1, 2, 7;
3, 2, 1, 8;
3, 1, 1, 2, 8;
3, 1, 1, 2, 9;
...
Illustration of initial terms (side view of the pyramid):
Row                                 _
1                                 _|_|
2                               _|_ _|
3                             _|_|_ _|
4                           _|_|_ _ _|
5                         _|_ _|_ _ _|
6                       _|_|_|_ _ _ _|
7                     _|_ _|_|_ _ _ _|
8                   _|_ _|_|_ _ _ _ _|
9                 _|_ _|_ _|_ _ _ _ _|
10              _|_ _|_|_|_ _ _ _ _ _|
11            _|_ _ _|_|_|_ _ _ _ _ _|
12          _|_ _|_|_ _|_ _ _ _ _ _ _|
13        _|_ _ _|_|_ _|_ _ _ _ _ _ _|
14      _|_ _ _|_ _|_|_ _ _ _ _ _ _ _|
15    _|_ _ _|_|_|_ _|_ _ _ _ _ _ _ _|
16   |_ _ _|_|_|_ _|_ _ _ _ _ _ _ _ _|
...
The above structure represents the first 16 levels (starting from the top) of one of the side views of the infinite stepped pyramid described in A245092. For another side view see A259176.
.
Illustration of initial terms (partial front view of the pyramid):
Row                                 _
1                                  |_|_
2                                 _|_ _|_
3                                |_| |_ _|_
4                               _|_| |_ _ _|_
5                              |_ _|_  |_ _ _|_
6                             _|_| |_| |_ _ _ _|_
7                            |_ _| |_|   |_ _ _ _|_
8                           _|_ _| |_|_  |_ _ _ _ _|_
9                          |_ _|  _|_ _|   |_ _ _ _ _|_
10                        _|_ _| |_| |_|   |_ _ _ _ _ _|_
11                       |_ _ _| |_| |_|_    |_ _ _ _ _ _|_
12                      _|_ _|   |_| |_ _|   |_ _ _ _ _ _ _|_
13                     |_ _ _|  _|_| |_ _|     |_ _ _ _ _ _ _|_
14                    _|_ _ _| |_ _|_  |_|_    |_ _ _ _ _ _ _ _|_
15                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _|_
16                   |_ _ _|   |_| |_| |_ _|     |_ _ _ _ _ _ _ _ _|
...
A part of the hidden pattern of the symmetric representation of sigma emerges from the partial front view of the pyramid described in A245092.
For another partial front view see A259176. For the total front view see A237593.
		

Crossrefs

Bisection of A237593.
Row sums give A000027.
Mirror of A259176 which is another bisection of A237593.

Programs

  • Mathematica
    (* function f[n,k] and its support functions are defined in A237593 *)
    a259177[n_, k_] := f[n, 2*k]
    TableForm[Table[a259177[n, k], {n, 1, 16}, {k, 1, row[n]}]] (* triangle *)
    Flatten[Table[a259177[n, k], {n, 1, 26}, {k, 1, [n]}]] (* sequence data *)
    (* Hartmut F. W. Hoft, Mar 06 2017 *)
  • PARI
    row(n) = (sqrt(8*n + 1) - 1)\2;
    s(n, k) = ceil((n + 1)/k - (k + 1)/2) - ceil((n + 1)/(k + 1) - (k + 2)/2);
    T(n, k) = if(k<=row(n), s(n, k), s(n, 2*row(n) + 1 - k));
    a259177(n, k) = T(n, 2*k);
    for(n=1, 26, for(k=1, row(n), print1(a259177(n, k),", ");); print();) \\ Indranil Ghosh, Apr 21 2017
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    def a259177(n, k): return T(n, 2*k)
    for n in range(1, 27): print([a259177(n, k) for k in range(1, row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Extensions

Better definition from Omar E. Pol, Apr 26 2021

A379634 Irregular triangle read by rows in which row n lists the odd divisors of n ordered as the mirror of A261697.

Original entry on oeis.org

1, 1, 3, 1, 1, 5, 1, 3, 1, 7, 1, 1, 3, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 5, 3, 15, 1, 1, 17, 1, 9, 3, 1, 19, 1, 5, 1, 7, 3, 21, 1, 11, 1, 23, 1, 3, 1, 5, 25, 1, 13, 1, 9, 3, 27, 1, 7, 1, 29, 1, 5, 15, 3, 1, 31, 1, 1, 11, 3, 33, 1, 17, 1, 7, 5, 35, 1, 9, 3, 1, 37, 1, 19, 1, 13, 3, 39, 1, 5, 1, 41, 1, 7, 21, 3, 1, 43, 1, 11, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2024

Keywords

Comments

Row n gives the last A001227(n) terms of the n-th row of A379630 and of A379631.
For a correspondence between the row n and the partitions of n into consecutive parts see A379630.

Examples

			Triangle begins:
   1;
   1;
   3,  1;
   1;
   5,  1;
   3,  1;
   7,  1;
   1;
   3,  9,  1;
   5,  1;
  11,  1;
   3,  1;
  13,  1;
   7,  1;
   5,  3, 15,  1;
   1;
  17,  1;
   9,  3,  1;
  19,  1;
   5,  1;
   7,  3, 21,  1;
  11,  1;
  23,  1;
   3,  1;
   5, 25,  1;
  13,  1;
   9,  3, 27,  1;
   7,  1;
  ...
Illustration of initial terms:
   Row    _
   1     |1|_
   2     |_ 1|_
   3     |3|  1|_
   4     | |_   1|_
   5     |_ 5|    1|_
   6     |3| |_     1|_
   7     | |  7|      1|_
   8     | |_  |_       1|_
   9     |_ 3|  9|        1|_
  10     |5| |   |_         1|_
  11     | | |_  11|          1|_
  12     | |  3|   |_           1|_
  13     | |_  |   13|            1|_
  14     |_ 7| |_    |_             1|_
  15     |5| |  3|   15|              1|_
  16     | | |   |     |_               1|_
  17     | | |_  |_    17|                1|_
  18     | |  9|  3|     |_                 1|_
  19     | |_  |   |     19|                  1|_
  20     |_ 5| |   |_      |_                   1|_
  21     |7| | |_   3|     21|                    1|_
  22     | | | 11|   |       |_                     1|_
  23     | | |   |   |_      23|                      1|_
  24     | | |_  |    3|       |_                       1|_
  25     | |  5| |_    |       25|                        1|_
  26     | |_  | 13|   |_        |_                          1|_
  27     |_ 9| |   |    3|       27|                           1|_
  28     |7| | |   |     |         |                             1|
  ...
The diagram is also the right part of the diagram of A379630 and of A379631.
The geometrical structure is the same as the diagram of A261350 which is the mirror of A237591.
		

Crossrefs

Mirror of A261697.
Right border gives A000012.
Row lengths give A001227.
Row sums give A000593.
Other versions are A182469, A261697, A261698.

A261348 a(1)=0; a(2)=0; for n>2: a(n) = A237591(n,2) = A237593(n,2).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 17, 16
Offset: 1

Views

Author

Omar E. Pol, Aug 24 2015

Keywords

Comments

n is an odd prime if and only if a(n) = 1 + a(n-1) and A237591(n,k) = A237591(n-1,k) for the values of k distinct of 2.
For k > 1 there are five numbers k in the sequence.
For more information see A237593.

Examples

			Apart from the initial two zeros the sequence can be written as an array T(j,k) with 6 columns, where row j is [j, j, j+1, j, j+1, j+1], as shown below:
1,   1,  2,  1,  2,  2;
2,   2,  3,  2,  3,  3;
3,   3,  4,  3,  4,  4;
4,   4,  5,  4,  5,  5;
5,   5,  6,  5,  6,  6;
6,   6,  7,  6,  7,  7;
7,   7,  8,  7,  8,  8;
8,   8,  9,  8,  9,  9;
9,   9, 10,  9, 10, 10;
10, 10, 11, 10, 11, 11;
11, 11, 12, 11, 12, 12;
12, 12, 13, 12, 13, 13;
13, 13, 14, 13, 14, 14;
14, 14, 15, 14, 15, 15;
15, 15, 16, 15, 16, 16;
...
Illustration of initial terms:
Row                                                     _
1                                                     _| |0
2                                                   _|  _|0
3                                                 _|   |1|
4                                               _|    _|1|
5                                             _|     |2 _|
6                                           _|      _|1| |
7                                         _|       |2  | |
8                                       _|        _|2 _| |
9                                     _|         |2  |  _|
10                                  _|          _|2  | | |
11                                _|           |3   _| | |
12                              _|            _|2  |   | |
13                            _|             |3    |  _| |
14                          _|              _|3   _| |  _|
15                        _|               |3    |   | | |
16                      _|                _|3    |   | | |
17                    _|                 |4     _|  _| | |
18                  _|                  _|3    |   |   | |
19                _|                   |4      |   |  _| |
20              _|                    _|4     _|   | |  _|
21            _|                     |4      |    _| | | |
22          _|                      _|4      |   |   | | |
23        _|                       |5       _|   |   | | |
24      _|                        _|4      |     |  _| | |
25    _|                         |5        |    _| |   | |
26   |                           |5        |   |   |   | |
...
The figure represents the triangle A237591 in which the numbers of horizontal cells in the second geometric region gives this sequence, for n > 2.
Note that this is also the second geometric region in the front view of the stepped pyramid described in A245092. For more information see also A237593.
		

Crossrefs

Showing 1-9 of 9 results.