A261391 a(n) = n^5 + 5*n^3 + 5*n.
0, 11, 82, 393, 1364, 3775, 8886, 18557, 35368, 62739, 105050, 167761, 257532, 382343, 551614, 776325, 1069136, 1444507, 1918818, 2510489, 3240100, 4130511, 5206982, 6497293, 8031864, 9843875, 11969386, 14447457, 17320268, 20633239, 24435150, 28778261, 33718432, 39315243, 45632114
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Wikipedia, Metallic mean.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Mathematica
Array[#^5 + 5 #^3 + 5 # &, 34] (* Michael De Vlieger, Aug 18 2015 *) Table[n^5 + 5*n^3 + 5*n, {n,0, 50}] (* G. C. Greubel, Aug 21 2015 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,11,82,393,1364,3775},40] (* Harvey P. Dale, May 07 2018 *)
-
PARI
concat(0, Vec(x*(11*x^4+16*x^3+66*x^2+16*x+11)/(x-1)^6 + O(x^100))) \\ Colin Barker, Aug 18 2015
Formula
a(n) = ( (n+sqrt(n^2+4))/2 )^5 - 1/( (n+sqrt(n^2+4))/2 )^5.
a(n) = -a(-n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6). - Colin Barker, Aug 18 2015
G.f.: x*(11*x^4+16*x^3+66*x^2+16*x+11) / (x-1)^6. - Colin Barker, Aug 18 2015
E.g.f.: (x^5 + 15*x^4 + 70*x^3 + 120*x^2 + 71*x + 11)*e^x. - G. C. Greubel, Aug 21 2015
Extensions
Offset changed from 1 to 0, initial 0 added and b-file adapted from Bruno Berselli, Aug 25 2015
Comments