A262065 Numbers that are palindromes in base-60 representation.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1
Examples
. n | a(n) | base 60 n | a(n) | base 60 . -----+------+----------- ------+-------+-------------- . 100 | 2440 | [40, 40] 1000 | 56415 | [15, 40, 15] . 101 | 2501 | [41, 41] 1001 | 56475 | [15, 41, 15] . 102 | 2562 | [42, 42] 1002 | 56535 | [15, 42, 15] . 103 | 2623 | [43, 43] 1003 | 56595 | [15, 43, 15] . 104 | 2684 | [44, 44] 1004 | 56655 | [15, 44, 15] . 105 | 2745 | [45, 45] 1005 | 56715 | [15, 45, 15] . 106 | 2806 | [46, 46] 1006 | 56775 | [15, 46, 15] . 107 | 2867 | [47, 47] 1007 | 56835 | [15, 47, 15] . 108 | 2928 | [48, 48] 1008 | 56895 | [15, 48, 15] . 109 | 2989 | [49, 49] 1009 | 56955 | [15, 49, 15] . 110 | 3050 | [50, 50] 1010 | 57015 | [15, 50, 15] . 111 | 3111 | [51, 51] 1011 | 57075 | [15, 51, 15] . 112 | 3172 | [52, 52] 1012 | 57135 | [15, 52, 15] . 113 | 3233 | [53, 53] 1013 | 57195 | [15, 53, 15] . 114 | 3294 | [54, 54] 1014 | 57255 | [15, 54, 15] . 115 | 3355 | [55, 55] 1015 | 57315 | [15, 55, 15] . 116 | 3416 | [56, 56] 1016 | 57375 | [15, 56, 15] . 117 | 3477 | [57, 57] 1017 | 57435 | [15, 57, 15] . 118 | 3538 | [58, 58] 1018 | 57495 | [15, 58, 15] . 119 | 3599 | [59, 59] 1019 | 57555 | [15, 59, 15] . 120 | 3601 | [1, 0, 1] 1020 | 57616 | [16, 0, 16] . 121 | 3661 | [1, 1, 1] 1021 | 57676 | [16, 1, 16] . 122 | 3721 | [1, 2, 1] 1022 | 57736 | [16, 2, 16] . 123 | 3781 | [1, 3, 1] 1023 | 57796 | [16, 3, 16] . 124 | 3841 | [1, 4, 1] 1024 | 57856 | [16, 4, 16] . 125 | 3901 | [1, 5, 1] 1025 | 57916 | [16, 5, 16] .
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (corrected b-file originally from Reinhard Zumkeller)
- Eric Weisstein's World of Mathematics, Palindromic Number
- Eric Weisstein's World of Mathematics, Sexagesimal
- Wikipedia, Palindromic number
- Wikipedia, Sexagesimal
- Index entries for sequences related to palindromes
Crossrefs
Programs
-
Haskell
import Data.List.Ordered (union) a262065 n = a262065_list !! (n-1) a262065_list = union us vs where us = [val60 $ bs ++ reverse bs | bs <- bss] vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs | bs <- tail bss, cs <- take 60 bss] bss = iterate s [0] where s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds val60 = foldr (\b v -> 60 * v + b) 0
-
Magma
[n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // Vincenzo Librandi, Aug 24 2016
-
Mathematica
f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* Vincenzo Librandi, Aug 24 2016 *) pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* Harvey P. Dale, Nov 04 2017 *)
-
PARI
isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ Michel Marcus, Jan 22 2022
-
Python
from sympy import integer_log from gmpy2 import digits, mpz def A262065(n): if n == 1: return 0 y = 60*(x:=60**integer_log(n>>1,60)[0]) return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if n
Chai Wah Wu, Jun 13-14 2024