A262342 Area of Lewis Carroll's paradoxical F(2n+1) X F(2n+3) rectangle.
10, 65, 442, 3026, 20737, 142130, 974170, 6677057, 45765226, 313679522, 2149991425, 14736260450, 101003831722, 692290561601, 4745030099482, 32522920134770, 222915410843905, 1527884955772562, 10472279279564026, 71778070001175617, 491974210728665290, 3372041405099481410
Offset: 1
Examples
F(3) * F(5) = 2 * 5 = 10 = 3^2 + 1 = F(4)^2 + 1, so a(1) = 10. G.f. = 10*x + 65*x^2 + 442*x^3 + 3026*x^4 + 20737*x^5 + 142130*x^6 + 974170*x^7 + ...
References
- W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th edition, Dover, 1987, p. 85.
- Henry E. Dudeney, 536 Puzzles and Curious Problems, Scribner, reprinted 1970, Problems 352-353 and their answers.
- Martin Gardner, Mathematics, Magic and Mystery, Dover, 1956, Chap. 8.
- Edward Wakeling, Rediscovered Lewis Carroll Puzzles, Dover, 1995, p. 12.
- David Wells, The Penguin Book of Curious and Interesting Puzzles, Penguin, 1997, Puzzle 143.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Margherita Barile, Dissection Fallacy, MathWorld.
- A. F. Horadam, Fibonacci Sequences and a Geometrical Paradox, Math. Mag., Vol. 35, No. 1 (1962), pp. 1-11.
- Ron Knott, Fibonacci jigsaw puzzles, 2014.
- Santosh Kumar, On Fibonacci Sequences and a Geometrical Paradox, Math. Mag., Vol. 37, No. 4 (1964), pp. 221-223.
- Oskar Schlömilch, Ein geometrisches Paradoxon, Zeitschrift für Mathematik und Physik, Vol. 13 (1868), p. 162.
- Torsten Sillke, Jigsaw paradox, 2004.
- David Singmaster, Vanishing area puzzles, Recreational Math. Mag., Vol. 1 (2014), pp. 10-21.
- Warren Weaver, Lewis Carroll and a Geometrical Paradox, American Math. Monthly, Vol. 45, No. 4 (1938), pp. 234-236.
- Wikipedia, Cassini and Catalan identities.
- Wikipedia, Fibonacci number.
- Wikipedia, Missing square puzzle; also see External Links.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Crossrefs
Programs
-
Magma
[Fibonacci(2*n+1)*Fibonacci(2*n+3) : n in [1..30]]; // Wesley Ivan Hurt, Oct 16 2015
-
Maple
with(combinat): A262342:=n->fibonacci(2*n+1)*fibonacci(2*n+3): seq(A262342(n), n=1..30); # Wesley Ivan Hurt, Oct 16 2015
-
Mathematica
Table[Fibonacci[2 n + 1] Fibonacci[2 n + 3], {n, 22}] LinearRecurrence[{8,-8,1},{10,65,442},30] (* Harvey P. Dale, Aug 06 2024 *)
-
PARI
Vec(-x*(2*x^2-15*x+10)/((x-1)*(x^2-7*x+1)) + O(x^30)) \\ Colin Barker, Oct 17 2015
-
PARI
a(n) = fibonacci(2*n+1) * fibonacci(2*n+3) \\ Altug Alkan, Oct 17 2015
Formula
a(n) = Fibonacci(2n+1) * Fibonacci(2n+3) = Fibonacci(2n+2)^2 + 1 for n > 0.
From Colin Barker, Oct 17 2015: (Start)
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: -x*(2*x^2-15*x+10) / ((x-1)*(x^2-7*x+1)).
(End)
a(3*k-2) mod 2 = 0; a(3*k-1) mod 2 = 1; a(3*k) mod 2 = 0, k > 0. - Altug Alkan, Oct 17 2015
a(n) = A059929(2*n+1) = A070550(4*n+1) = A166516(2*n+2) = A190018(8*n) = A236165(4*n+4) = A245306(2*n+2). - Bruno Berselli, Oct 17 2015
a(n) = A064170(n+3). - Alois P. Heinz, Oct 17 2015
E.g.f.: (1/5)*((1/phi*r)*exp(b*x) + (phi^4/r)*exp(a*x) + 3*exp(x) - 10), where r = 2*phi+1, 2*a=7+3*sqrt(5), 2*b=7-3*sqrt(5). - G. C. Greubel, Oct 17 2015
Sum_{n>=1} 1/a(n) = sqrt(5)/2 - 1 = A176055 - 2. - Amiram Eldar, Mar 04 2021
Comments