A262704 Triangle: Newton expansion of C(n,m)^3, read by rows.
1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
Offset: 0
Examples
Triangle starts: n\m [0] [1] [2] [3] [4] [5] [6] [7] [8] [0] 1; [1] 0, 1; [2] 0, 6, 1; [3] 0, 6, 24, 1; [4] 0, 0, 114, 60, 1; [5] 0, 0, 180, 690, 120, 1; [6] 0, 0, 90, 2940, 2640, 210, 1; [7] 0, 0, 0, 5670, 21840, 7770, 336, 1; [8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1; [9] ...
Links
- Gheorghe Coserea, Rows n = 0..200, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Crossrefs
Column sums are the A126086, per the comment given thereto by Brendan McKay.
Second diagonal (T_3(n+1,n)) is A007531 (n+2).
Column T_3(n,2) is A122193(3,n).
Programs
-
Magma
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
Mathematica
T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
MuPAD
// as a function T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n): // as a matrix h x h _P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]): _P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]): _T_3:=h->_P(h)^-1*_P_3(h):
-
PARI
T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
-
PARI
t3(n,m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3); concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ Gheorghe Coserea, Jul 14 2016
Formula
T_3(n,m) = Sum_{j=0..n} (-1)^(n-j)*C(n,j)*C(j,m)^3.
Also, let S(r,s)(n,m) denote the Generalized Stirling2 numbers as defined in the link above,then T_3(n,m) = n! / (m!)^3 * S(m,m)(3,n).
Comments