cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215614 Numbers k that are not multiples of 10 and such that sum of digits of k^2 is 7.

Original entry on oeis.org

4, 5, 32, 49, 149, 1049
Offset: 1

Views

Author

Zak Seidov, Aug 17 2012

Keywords

Comments

Except for the number 1, the terms of this sequence and numbers 10^k+1 (A062397) are the only numbers (up to trailing 0's) whose square has sum of digits less than 9. - M. F. Hasler, Sep 23 2014
Is this sequence finite? See also A384095 for a similar problem with digit sum 9. - M. F. Hasler, Jun 20 2025
a(7) > 10^15 if it exists. - David A. Corneth, Jun 21 2025
a(7) > 10^65 if it exists. - Michael S. Branicky, Jun 25 2025
a(7) > 10^700 if it exists. - Max Alekseyev, Jun 27 2025

Crossrefs

Cf. A004159 (sum of digits of n^2).
Subsequence of A262711.
Cf. A384094 (similar for digit sum 9), A384095 (subset of "sporadic solutions").

Programs

  • Mathematica
    Select[Range[1500],Mod[#,10]!=0&&Total[IntegerDigits[#^2]]==7&] (* Harvey P. Dale, Aug 21 2022 *)
  • PARI
    for(n=1,9e9, n%10&&sumdigits(n^2)==7&&print1(n",")) \\ M. F. Hasler, Sep 23 2014

Extensions

Edited and unproven keywords fini,full removed by Max Alekseyev, Jun 20 2025

A262712 Numbers k such that sum of digits of k^2 is 9.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 30, 39, 45, 48, 51, 60, 90, 102, 105, 111, 120, 150, 180, 201, 210, 249, 300, 318, 321, 348, 351, 390, 450, 480, 501, 510, 549, 600, 900, 1002, 1005, 1011, 1020, 1050, 1101, 1110, 1149, 1200, 1500, 1761, 1800, 2001, 2010, 2100, 2490
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

Subsequence of A008585.

Examples

			6 is in sequence because 6^2 = 36 and 3+6 = 9.
		

Crossrefs

Cf. similar sequences listed in A262711.

Programs

  • Magma
    [n: n in [1..2*10^4] | &+Intseq(n^2) eq 9 ];
    
  • Maple
    filter:= proc(n) convert(convert(n^2,base,10),`+`) = 9 end proc:select(filter, [$1..10^5]); # Robert Israel, Jan 04 2024
  • Mathematica
    Select[Range[10^5], Total[IntegerDigits[#^2]] == 9 &]
  • PARI
    for(n=1, 1e8, if (sumdigits(n^2) == 9, print1(n", "))) \\ Altug Alkan, Sep 28 2015

A262713 Numbers k such that the sum of digits of k^2 is 10.

Original entry on oeis.org

8, 19, 35, 46, 55, 71, 80, 145, 152, 179, 190, 251, 332, 350, 361, 449, 451, 460, 548, 550, 649, 710, 800, 1450, 1520, 1790, 1900, 2510, 3320, 3500, 3610, 4490, 4499, 4510, 4600, 5480, 5500, 6490, 7100, 8000, 14500, 15200, 17900, 19000, 20249, 20251, 24499
Offset: 1

Views

Author

Vincenzo Librandi, Sep 28 2015

Keywords

Comments

From Altug Alkan, Sep 29 2015: (Start)
Subsequence of A001651.
If a(n)+1 mod 9 != 0 then a(n)-1 mod 9 = 0;
if a(n)-1 mod 9 != 0 then a(n)+1 mod 9 = 0;
a(n)^2 - 1 mod 9 = 0. (End)
A135027(n)*10^k is a term for all n > 0, k >= 0. - Michael S. Branicky, Aug 19 2021

Examples

			19 is in sequence because 19^2 = 361 and 3+6+1 = 10.
		

Crossrefs

Cf. similar sequences listed in A262711.

Programs

  • Magma
    [n: n in [1..3*10^4] | &+Intseq(n^2) eq 10 ];
    
  • Mathematica
    Select[Range[10^5], Total[IntegerDigits[#^2]] == 10 &]
  • PARI
    for(n=1, 1e6, if (sumdigits(n^2) == 10, print1(n", "))) \\ Altug Alkan, Sep 28 2015
    
  • Python
    # See linked program to go to larger numbers
    def ok(n): return sum(map(int, str(n*n))) == 10
    print(list(filter(ok, range(25000)))) # Michael S. Branicky, Aug 19 2021
Showing 1-3 of 3 results.