cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A262735 Expansion of x*(1-x-x^2)/((1-x)*(1-x-2*x^2-x^3)).

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 17, 36, 77, 165, 354, 760, 1632, 3505, 7528, 16169, 34729, 74594, 160220, 344136, 739169, 1587660, 3410133, 7324621, 15732546, 33791920, 72581632, 155898017, 334853200, 719230865, 1544835281, 3318150210, 7127051636, 15308187336
Offset: 0

Views

Author

Werner Schulte, Sep 29 2015

Keywords

Crossrefs

Programs

  • Maple
    a:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 elif n=2 then 1 elif n=3 then 2 else 2*a(n-1)+a(n-2)-a(n-3)-a(n-4); fi; end:  seq(f(n), n=0..50); # Wesley Ivan Hurt, Oct 10 2015
  • Mathematica
    CoefficientList[Series[x (1 - x - x^2)/((1 - x) (1 - x - 2 x^2 - x^3)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 29 2015 *)
    LinearRecurrence[{2,1,-1,-1},{0,1,1,2},40] (* Harvey P. Dale, Sep 23 2019 *)
  • PARI
    concat(0, Vec(x*(1-x-x^2)/((1-x)*(1-x-2*x^2-x^3)) + O(x^50))) \\ Michel Marcus, Sep 29 2015

Formula

G.f.: A(x) = x*(1-x-x^2)*B(x), where B is g.f. of A077864.
a(n) = A077864(n+1)-2*A077864(n), n >= 0.
a(n+3) = A077864(n+2)-A077864(n+1)-A077864(n), n >= 0.
Recurrence: a(0)=0, a(1)=1, a(2)=1, a(3)=2, a(4)=4, a(5)=8, a(6)=17, and a(n) = 4*a(n-1)-4*a(n-2)+a(n-7) for n >= 7.
Conjecture: a(n+1) = Sum_{j=0..n/2} A027907(n-j,2*j), n >= 0.
a(n) = 2*a(n-1)+a(n-2)-a(n-3)-a(n-4) for n>3. - Wesley Ivan Hurt, Oct 10 2015
a(n) = a(n-1)+2*a(n-2)+a(n-3)-1, n>=3. - R. J. Mathar, Nov 07 2015