cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A155112 Triangle T(n,k), 0<=k<=n, read by rows given by [0,2,-1/2,-1/2,0,0,0,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 5, 10, 6, 1, 0, 8, 22, 21, 8, 1, 0, 13, 45, 59, 36, 10, 1, 0, 21, 88, 147, 124, 55, 12, 1, 0, 34, 167, 339, 366, 225, 78, 14, 1, 0, 55, 310, 741, 976, 770, 370, 105, 16, 1, 0, 89, 566, 1557, 2422, 2337, 1443, 567, 136, 18, 1, 0, 144, 1020, 3174, 5696, 6505, 4920, 2485, 824, 171, 20, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 20 2009

Keywords

Comments

A Fibonacci convolution triangle; Riordan array (1, x*(1+x)/(1-x-x^2)).

Examples

			Triangle begins:
  1;
  0,  1;
  0,  2,  1;
  0,  3,  4,  1;
  0,  5, 10,  6,  1;
  0,  8, 22, 21,  8,  1;
  0, 13, 45, 59, 36, 10, 1;
  ...
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n-j,j)*Binomial(n-j,k)*k/(n-j): j in [0..Floor(n/2)]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 26 2021
    
  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n+1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, k_]:= If[n==0, 1, Sum[Binomial[n-j, j]*Binomial[n-j, k]*k/(n-j), {j, 0, Floor[n/2]}]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 26 2021 *)
  • Sage
    def T(n,k): return 1 if n==0 else sum( binomial(n-j,j)*binomial(n-j,k)*k/(n-j) for j in (0..n//2) )
    flatten([[T(n,k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 26 2021

Formula

Recurrence: T(n+2,k+1) = T(n+1,k+1) + T(n+1,k) + T(n,k+1) + T(n,k).
Explicit formula: T(n,k) = Sum_{i=0..floor(n/2)} binomial(n-i, i)*binomial(n-i, k)*k/(n-i), for n > 0.
G.f.: (1-x-x^2)/(1-(1+y)*x-(1+y)*x^2). - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A155020(n), A154964(n), A154968(n), A154996(n), A154997(n), A154999(n), A155000(n), A155001(n), A155017(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A155020(n), A155116(n), A155117(n), A155119(n), A155127(n), A155130(n), A155132(n), A155144(n), A155157(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Feb 21 2012
Sum_{k=0..n} T(n, k)*(m-1)^k = (1/m)*[n=0] - (m-1)*(i*sqrt(m))^(n-2)*ChebyshevU(n, -i*sqrt(m)/2). - G. C. Greubel, Mar 26 2021
Sum_{k=0..n} k * T(n,k) = A291385(n-1) for n>=1. - Alois P. Heinz, Sep 29 2022

Extensions

Typos in two terms corrected by Alois P. Heinz, Aug 08 2015

A379025 a(n) = Sum_{k=0..n} binomial(3*n+k-1,k) * binomial(3*n+k,n-k).

Original entry on oeis.org

1, 6, 78, 1149, 17850, 285711, 4661727, 77086008, 1287322866, 21661521945, 366687839133, 6237631866417, 106535632157643, 1825763898882189, 31379978657609100, 540688387589377764, 9336602657251874754, 161534120354250452361, 2799488717098336992687
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(3*n+k-1, k)*Binomial(3*n+k, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Dec 21 2024
  • Mathematica
    Table[Sum[Binomial[3*n+k-1,k]*Binomial[3*n+k, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Dec 21 2024 *)
    a[n_]:= Binomial[3*n, n]*HypergeometricPFQ[{-n, 3*n, 1 + 3*n}, {1/2 + n, 1 + n}, -1/4]; Array[a,19,0] (* Stefano Spezia, Dec 22 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k-1, k)*binomial(3*n+k, n-k));
    

Formula

a(n) = [x^n] ( (1 + x)/(1 - x - x^2) )^(3*n).
a(n) = binomial(3*n, n)*hypergeom([-n, 3*n, 1 + 3*n], [1/2 + n, 1 + n], -1/4). - Stefano Spezia, Dec 22 2024

A379022 a(n) = Sum_{k=0..n} binomial(2*n+k-1,k) * binomial(2*n+k,n-k).

Original entry on oeis.org

1, 4, 36, 370, 4012, 44824, 510498, 5892310, 68684540, 806715964, 9532070396, 113179713046, 1349276883346, 16140148109960, 193629588953214, 2328744593780590, 28068490664161756, 338960821947139640, 4100329281075440400, 49676100591186493156, 602654837914634224812
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+k-1, k)*binomial(2*n+k, n-k));

Formula

a(n) = [x^n] ( (1 + x)/(1 - x - x^2) )^(2*n).

A379026 a(n) = Sum_{k=0..n} binomial(4*n+k-1,k) * binomial(4*n+k,n-k).

Original entry on oeis.org

1, 8, 136, 2612, 52888, 1103248, 23458756, 505519792, 11001461560, 241240165796, 5321735043496, 117969960106380, 2625673485660100, 58638653062716488, 1313363972969179904, 29489827322243843032, 663600214363813934328, 14961465721142755457484
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k-1, k)*binomial(4*n+k, n-k));

Formula

a(n) = [x^n] ( (1 + x)/(1 - x - x^2) )^(4*n).
Showing 1-4 of 4 results.