cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A263246 Expansion of e.g.f.: sin(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), odd powers only.

Original entry on oeis.org

1, 1, -11, -491, -11159, 460681, 103577629, 8160790429, -624333860399, -386787409545839, -68810049201689531, 6999828208693648549, 9872674440874152431161, 3255253386897615662908441, -346248578699462435167833491, -1072454627614122049417452882131, -584579592415141205182370782224479, 47874474639430619859527348515679521
Offset: 1

Views

Author

Paul D. Hanna, Oct 13 2015

Keywords

Examples

			E.g.f.: S(x) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! + 103577629*x^13/13! + 8160790429*x^15/15! +...
Related expansions.
S(x)^2 = 2*x^2/2! + 8*x^4/4! - 112*x^6/6! - 9088*x^8/8! - 310528*x^10/10! + 14701568*x^12/12! +...+ -A263249(n)*x^(2*n)/(2*n)! +...
sqrt(1 - S(x)^2) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! +...+ A263247(n)*x^(2*n)/(2*n)! +...
sqrt(1 + S(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(2*n)*x^(2*n)/(2*n)! +...
		

Crossrefs

Programs

  • Mathematica
    r:= Sqrt[2]; With[{nmax = 500}, CoefficientList[Series[Sin[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax - 1]!][[2 ;; -1 ;; 2]] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n) = local(S=x,C=1,D=1,ox=O(x^(2*n+2))); for(i=1,2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D);); (2*n+1)!*polcoeff(S, 2*n+1)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = - A101922(n). - Michel Marcus, Sep 11 2022

A263247 Expansion of e.g.f.: r*cos(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), even terms only.

Original entry on oeis.org

1, -1, -7, -49, 1457, 148799, 6409193, -436948849, -155175606943, -18245982604801, 1864031151256793, 1627915037217907151, 390178889220670506257, -46784571591411151243201, -89306450512551172914577207, -37461031331532428265812712049, 4204976347690709918899169381057, 17814701962096793952255775890393599
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2015

Keywords

Examples

			E.g.f.: C(x) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! - 436948849*x^14/14! +...
Related expansions.
C(x)^2 = 1 - 2*x^2/2! - 8*x^4/4! + 112*x^6/6! + 9088*x^8/8! + 310528*x^10/10! - 14701568*x^12/12! +...+ A263249(n)*x^(2*n)/(2*n)! +...
sqrt(1 - C(x)^2) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! +...+ A263246(n)*x^(2*n+1)/(2*n+1)! +...
sqrt(2 - C(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(n)*x^(2*n)/(2*n)! +...
		

Crossrefs

Programs

  • Mathematica
    r:= Sqrt[2]; With[{nmax = 60}, CoefficientList[Series[r*Cos[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n) = local(S=x,C=1,D=1,ox=O(x^(2*n+2))); for(i=1,2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D);); (2*n)!*polcoeff(C, 2*n)}
    for(n=0,20,print1(a(n),", "))

A263248 E.g.f.: r / sqrt(1 + cos(r*x)^2) where r = sqrt(2), even powers only.

Original entry on oeis.org

1, 1, 1, -71, -2591, -23759, 7872481, 1032165289, 34225547329, -19224419375519, -5800472581083839, -474084524873544551, 353987939065905654049, 201460031539970745643921, 32857189444574660214635041, -29238884957420392451016521591, -28126153570109708198511424386431, -8022417111018145463775521643973439, 7957314358326789159275513256441813121
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2015

Keywords

Examples

			E.g.f.: D(x) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! + 1032165289*x^14/14! + ...
Related expansions.
D(x)^2 = 1 + 2*x^2/2! + 8*x^4/4! - 112*x^6/6! - 9088*x^8/8! - 310528*x^10/10! + 14701568*x^12/12! + ... + -A263249(n)*x^(2*n)/(2*n)! + ...
sqrt(D(x)^2 - 1) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! + ... + A263246(n)*x^(2*n+1)/(2*n+1)! + ...
sqrt(2 - D(x)^2) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! + ... + A263247(n)*x^(2*n)/(2*n)! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Series[EllipticF[x,1/2],{x,0,41}],2n+1](2n+1)!2^n, {n, 0, 20}] (* Benedict W. J. Irwin, Apr 06 2017 *)
    r:= Sqrt[2]; With[{nmax = 60}, CoefficientList[Series[r/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 27 2018 *)
  • PARI
    {a(n) = local(S=x,C=1,D=1,ox=O(x^(2*n+2))); for(i=1,2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D);); (2*n)!*polcoeff(D, 2*n)}
    for(n=0,20,print1(a(n),", "))

A381347 Expansion of e.g.f. 1/( 1 - sin(sqrt(2)*x) / sqrt(2) ).

Original entry on oeis.org

1, 1, 2, 4, 8, 4, -112, -1184, -9088, -59504, -310528, -643136, 14701568, 323581504, 4554426368, 51666451456, 458243735552, 2004840714496, -37024075153408, -1386061762251776, -29290212127670272, -483475390212586496, -6224109737622372352, -45231727252157947904
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
    a(n) = sum(k=0, n, k!*(-2)^((n-k)/2)*a136630(n, k));

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} (-2)^k * binomial(n,2*k+1) * a(n-2*k-1).
a(n) = Sum_{k=0..n} k! * (-2)^((n-k)/2) * A136630(n,k)
Showing 1-4 of 4 results.