A269576
a(n) = Product_{i=1..n} (4^i - 3^i).
Original entry on oeis.org
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269661 (j=5, k=4).
-
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
A269661
a(n) = Product_{i=1..n} (5^i - 4^i).
Original entry on oeis.org
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269576 (j=4, k=3).
-
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
Showing 1-2 of 2 results.
Comments