A111139
a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.
Original entry on oeis.org
0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
Offset: 0
-
a:=n->sum(fibonacci (j)*n!/j!,j=0..n):seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
-
f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
Module[{nn=20,fibs,fct},fct=Range[0,nn]!;fibs=Accumulate[ Fibonacci[ Range[ 0,nn]]/fct];Times@@@Thread[{fct,fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
-
vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015
A277345
a(n) = Gamma(n+1, phi)*exp(phi) + Gamma(n+1, 1-phi)*exp(1-phi), where phi=(1+sqrt(5))/2.
Original entry on oeis.org
2, 3, 9, 31, 131, 666, 4014, 28127, 225063, 2025643, 20256553, 222822282, 2673867706, 34760280699, 486643930629, 7299658960799, 116794543374991, 1985507237378418, 35739130272817302, 679043475183538087, 13580869503670776867, 285198259577086338683
Offset: 0
-
RecurrenceTable[{a[0] == 2, a[1] == 3, a[2] == 9, n (a[n] + a[n - 1]) == (n + 3) a[n + 1] - a[n + 2]}, a[n], {n, 0, 20}] (* or *)
Round@Table[Gamma[n + 1, GoldenRatio] Exp[GoldenRatio] + Gamma[n + 1, 1 - GoldenRatio] Exp[1 - GoldenRatio], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
A277431
Expansion of e.g.f.: cosh(sqrt(2)*x)/(1-x).
Original entry on oeis.org
1, 1, 4, 12, 52, 260, 1568, 10976, 87824, 790416, 7904192, 86946112, 1043353408, 13563594304, 189890320384, 2848354805760, 45573676892416, 774752507171072, 13945545129079808, 264965357452516352, 5299307149050328064, 111285450130056889344, 2448279902861251567616
Offset: 0
G.f. = 1 + x + 4*x^2 + 12*x^3 + 52*x^4 + 260*x^5 + 1568*x^6 + ... - _Michael Somos_, Oct 01 2018
-
I:=[1,4,12]; [1] cat [n le 3 select I[n] else n*Self(n-1) + 2*Self(n-2) - 2*(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Sep 30 2018
-
Round@Table[(Gamma[n + 1, Sqrt[2]] Exp[Sqrt[2]] + Gamma[n + 1, -Sqrt[2]]/Exp[Sqrt[2]])/2, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
Table[SeriesCoefficient[Cosh[Sqrt[2] x]/(1 - x), {x, 0, n}] n!, {n, 0, 20}]
a[ n_] := If[ n < 0, 0, n! Sum[ 2^k / (2 k)!, {k, 0, n/2}]]; (* Michael Somos, Oct 01 2018 *)
With[{nn=30},CoefficientList[Series[Cosh[x Sqrt[2]]/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 13 2024 *)
-
x='x+O('x^30); Vec(serlaplace(cosh(sqrt(2)*x)/(1-x))) \\ G. C. Greubel, Sep 30 2018
-
{a(n) = if( n<0, 0, n! * sum(k=0, n\2, 2^k / (2*k)!))}; /* Michael Somos, Oct 01 2018 */
A277432
E.g.f.: sinh(sqrt(2)*x)/(sqrt(2)*(1-x)).
Original entry on oeis.org
0, 1, 2, 8, 32, 164, 984, 6896, 55168, 496528, 4965280, 54618112, 655417344, 8520425536, 119285957504, 1789289362688, 28628629803008, 486686706651392, 8760360719725056, 166446853674776576, 3328937073495531520, 69907678543406162944, 1537968927954935584768
Offset: 0
-
I:=[1,2,8]; [0] cat [n le 3 select I[n] else n*Self(n-1) + 2*Self(n-2) - 2*(n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Aug 19 2018
-
f:= gfun:-rectoproc({a(n) = n*a(n-1) + 2*a(n-2) - 2*(n-2)*a(n-3),a(0)=0,a(1)=1,a(2)=2},a(n),remember):
map(f, [$0..20]); # Robert Israel, Oct 30 2016
-
Round@Table[(Gamma[n + 1, Sqrt[2]] Exp[Sqrt[2]] - Gamma[n + 1, -Sqrt[2]]/Exp[Sqrt[2]])/(2 Sqrt[2]), {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster *)
Expand@Table[SeriesCoefficient[Sinh[Sqrt[2] x]/(Sqrt[2] (1 - x)), {x, 0, n}] n!, {n, 0, 20}]
-
x='x+O('x^30); concat([0], round(Vec(serlaplace(sinh(sqrt(2)*x)/( sqrt(2)*(1-x)))))) \\ G. C. Greubel, Aug 19 2018
Showing 1-4 of 4 results.
Comments