cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264960 Half-convolution of the central binomial coefficients A000984 with itself.

Original entry on oeis.org

1, 2, 10, 32, 146, 512, 2248, 8192, 35218, 131072, 556040, 2097152, 8815496, 33554432, 140107040, 536870912, 2230302098, 8589934592, 35541690568, 137438953472, 566823203656, 2199023255552, 9044910175520, 35184372088832, 144393718191496
Offset: 0

Views

Author

Peter Bala, Nov 29 2015

Keywords

Comments

The half-convolution of a sequence {s(n)}n>=0 with itself is defined by r(n) := Sum_{k = 0..floor(n/2)} s(k)*s(n-k). See A201204.

Crossrefs

Programs

  • GAP
    List([0..24],n->Sum([0..Int(n/2)],k->Binomial(2*k,k)*Binomial(2*n-2*k,n-k))); # Muniru A Asiru, Nov 25 2018
    
  • Magma
    [(&+[Binomial(2*k,k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 26 2018
    
  • Maple
    A264960:= n-> add(binomial(2*k,k)*binomial(2*n - 2*k, n - k),k = 0..floor(n/2)):
    seq(A264960(n),n = 0..24);
  • Mathematica
    a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Nov 25 2018 *)
  • PARI
    a(n) = sum(k = 0, n\2, binomial(2*k,k)*binomial(2*n - 2*k, n - k)); \\ Michel Marcus, Nov 30 2015
    
  • Sage
    [sum(binomial(2*k,k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # G. C. Greubel, Nov 26 2018

Formula

a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k).
a(2*n + 1) = 2^(4*n + 1) = A013776(n).
a(2*n) = (1/2)*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n).
O.g.f.: (1/2)*( 2/Pi*EllipticK(4*x) + 1/(1 - 4*x) ).
E.g.f.: (1/2)*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ).
D-finite with recurrence: - (2*n-3)*n^2*a(n) + 4*(2*n-1)*(n-1)^2*a(n-1) + 16*(2*n-3)*(n-1)^2*a(n-2) - 64*(2*n-1)*(n-2)^2*a(n-3) = 0. - Georg Fischer, Nov 25 2022