A264960 Half-convolution of the central binomial coefficients A000984 with itself.
1, 2, 10, 32, 146, 512, 2248, 8192, 35218, 131072, 556040, 2097152, 8815496, 33554432, 140107040, 536870912, 2230302098, 8589934592, 35541690568, 137438953472, 566823203656, 2199023255552, 9044910175520, 35184372088832, 144393718191496
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1520
Programs
-
GAP
List([0..24],n->Sum([0..Int(n/2)],k->Binomial(2*k,k)*Binomial(2*n-2*k,n-k))); # Muniru A Asiru, Nov 25 2018
-
Magma
[(&+[Binomial(2*k,k)*Binomial(2*n-2*k, n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Nov 26 2018
-
Maple
A264960:= n-> add(binomial(2*k,k)*binomial(2*n - 2*k, n - k),k = 0..floor(n/2)): seq(A264960(n),n = 0..24);
-
Mathematica
a[n_] := Sum[Binomial[2k, k]*Binomial[2n - 2k, n - k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Amiram Eldar, Nov 25 2018 *)
-
PARI
a(n) = sum(k = 0, n\2, binomial(2*k,k)*binomial(2*n - 2*k, n - k)); \\ Michel Marcus, Nov 30 2015
-
Sage
[sum(binomial(2*k,k)*binomial(2*n-2*k, n-k) for k in (0..floor(n/2))) for n in range(30)] # G. C. Greubel, Nov 26 2018
Formula
a(n) = Sum_{k = 0..floor(n/2)} binomial(2*k,k)*binomial(2*n - 2*k, n - k).
a(2*n + 1) = 2^(4*n + 1) = A013776(n).
a(2*n) = (1/2)*(binomial(2*n,n)^2 + 16^n) = A112830(2*n,n).
O.g.f.: (1/2)*( 2/Pi*EllipticK(4*x) + 1/(1 - 4*x) ).
E.g.f.: (1/2)*( cosh(4*x) + sinh(4*x) + (BesselI(0,2*x))^2 ).
D-finite with recurrence: - (2*n-3)*n^2*a(n) + 4*(2*n-1)*(n-1)^2*a(n-1) + 16*(2*n-3)*(n-1)^2*a(n-2) - 64*(2*n-1)*(n-2)^2*a(n-3) = 0. - Georg Fischer, Nov 25 2022
Comments