cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A264981 Highest power of 9 dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 81, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 9
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 9. - Tom Edgar, Feb 02 2016

Examples

			Since 18 = 9 * 2, a(18) = 9. Likewise, since 9 does not divide 17, a(17) = 1. - _Tom Edgar_, Feb 02 2016
		

Crossrefs

Similar sequences for other bases: A006519 (2), A038500 (3), A234957 (4), A060904 (5), A234959 (6).

Programs

  • Mathematica
    Table[9^Length@ TakeWhile[Reverse@ IntegerDigits[n, 9], # == 0 &], {n, 99}] (* Michael De Vlieger, Dec 09 2015 *)
    9^Table[IntegerExponent[n, 9], {n, 150}] (* Vincenzo Librandi, Feb 03 2016 *)
  • PARI
    a(n) = 9^valuation(n, 9); \\ Michel Marcus, Dec 08 2015
    
  • Sage
    [9^valuation(i, 9) for i in [1..100]] # Tom Edgar, Feb 02 2016
  • Scheme
    (define (A264981 n) (let loop ((k 9)) (if (not (zero? (modulo n k))) (/ k 9) (loop (* 9 k)))))
    

Formula

a(n) = 9^valuation(n,9). - Tom Edgar, Feb 02 2016
G.f.: x/(1 - x) + 8 * Sum_{k>=1} 9^(k-1)*x^(9^k)/(1 - x^(9^k)). - Ilya Gutkovskiy, Jul 10 2019
From Amiram Eldar, Dec 31 2022: (Start)
Multiplicative with a(3^e) = 3^(2*floor(e/2)), and a(p^e) = 1 if p != 3.
Dirichlet g.f.: zeta(s)*(9^s-1)/(9^s-9).
Sum_{k=1..n} a(k) ~ (4/(9*log(3)))*n*log(n) + (5/9 + 4*(gamma-1)/(9*log(3)))*n, where gamma is Euler's constant (A001620). (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018