A265103 a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7).
1, 728, 482885, 347993910, 267058714626, 214401560777712, 177957899774070416, 151516957974714281810, 131614194900668669130060, 116186564091895720987588128, 103938666796148178180041038716, 94020887900502277905668153549928, 85855382816448334044679630209920925
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..333
- D. Armstrong, B. Rhoades, and N. Williams, Rational associahedra and noncrossing partitions arxiv:1305.7286v1 [math.CO], 2013.
Crossrefs
Programs
-
Magma
[Binomial(10*n+7, 5*n+1)/(10*n+7): n in [0..15]]; // Vincenzo Librandi, Dec 09 2015
-
Maple
seq(binomial(10*n + 7, 5*n + 1)/(10*n + 7), n = 0..12);
-
Mathematica
Table[Binomial[10n+7, 5n+1]/(10n+7), {n, 0, 20}] (* Vincenzo Librandi, Dec 09 2015 *)
-
PARI
a(n)=binomial(10*n + 7, 5*n + 1)/(10*n + 7) \\ Anders Hellström, Dec 07 2015
-
Sage
[binomial(10*n+7, 5*n+1)/(10*n+7) for n in (0..20)] # G. C. Greubel, Feb 16 2019
Formula
a(n) = binomial(10*n + 7, 5*n + 1)/(10*n + 7).
(n + 1)*(5*n - 2)*(5*n - 3)*(5*n + 4)*(5*n + 6)*a(n) = 32*(2*n + 1)*(10*n + 1)*(10*n - 1)*(10*n + 3)*(10*n - 3)*a(n-1) with a(0) = 1.
From Ilya Gutkovskiy, Feb 28 2017: (Start)
O.g.f.: (5F4(-3/10,-1/10,1/10,3/10,1/2; -3/5,-2/5,4/5,6/5; 1024*x) - 1)/(2*x).
E.g.f.: 5F5(7/10,9/10,11/10,13/10,3/2; 2/5,3/5,9/5,2,11/5; 1024*x).
a(n) ~ 4^(5*n+3)/(5*sqrt(5*Pi)*n^(3/2)). (End)
Comments