cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A267030 Primes p such that p*(3^p) + 2 is also prime.

Original entry on oeis.org

3, 5, 11, 17, 317, 373, 10313
Offset: 1

Views

Author

Emre APARI, Jan 09 2016

Keywords

Comments

The terms of this sequence are the prime terms of A265121.
The first few corresponding primes are 83, 1217, 1948619, 2195382773, ... .
a(8) > 10^5. - Michael S. Branicky, Oct 08 2024

Examples

			p = 17; [17 * (3 ^ 17) + 2] = 2195382773 (is a prime number).
		

Crossrefs

Cf. A265121.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime((p*(3^p)+2))]; // Vincenzo Librandi, Jan 10 2016
    
  • Maple
    select(p -> isprime(p) and isprime(p*3^p+2), [seq(i,i=3..2000,2)]); # Robert Israel, Jan 10 2016
  • Mathematica
    Select[Prime@ Range@ 1000, PrimeQ[# (3^#) + 2] &] (* Michael De Vlieger, Jan 09 2016 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if(ispseudoprime((p*(3^p) + 2)), print1(p, ", "))); \\ Altug Alkan, Jan 10 2016

A382094 Integers k such that k*2^k + 3 is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 11, 28, 40, 110, 124, 826, 871, 1355, 1540, 2285, 8908, 20824, 31715, 61655, 75920, 96274, 195871, 233125, 242594, 252760, 259825, 349315
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 15 2025

Keywords

Examples

			4 is in the sequence because 4*2^4 + 3 = 67 is prime.
		

Crossrefs

Programs

  • Magma
    [k: k in [0..1000] | IsPrime(k*2^k+3)];
  • Mathematica
    Select[Range[0,5000],PrimeQ[#*2^#+3] &] (* Stefano Spezia, Mar 15 2025 *)

Extensions

a(18)-a(22) from Michael S. Branicky, Mar 15 2025
a(23)-a(25) from Georg Grasegger, Apr 15 2025
a(26)-a(28) from Georg Grasegger, May 14 2025
Showing 1-2 of 2 results.