A277389
Numbers k such that lambda(k)^3 divides (k-1)^2, where lambda(k) = A002322(k).
Original entry on oeis.org
1, 2, 1729, 19683001, 367804801, 631071001, 2064236401, 2320690177, 24899816449, 40017045601, 110592000001, 137299665601, 432081216001, 479534887801, 760355883001, 1111195454401, 3176523000001, 3495866888449, 3837165696001, 8571867768001, 14373832968001
Offset: 1
A265653
Integers k such that (k-1)^3 + 1 is a Fermat pseudoprime to base 2 (A001567).
Original entry on oeis.org
13, 37, 139, 271, 547, 4801, 7561, 12841, 14701, 358201, 678481, 16139971, 22934101, 55058581, 59553721, 74371321, 113068381, 116605861, 242699311, 997521211, 1592680321, 1652749201, 3190927741, 5088964801, 6974736757, 9214178821
Offset: 1
13 is a term because (13-1)^3 + 1 = 1729, which is a Fermat pseudoprime to base 2.
37 is a term because (37-1)^3 + 1 = 46657, which is a Fermat pseudoprime to base 2.
-
Select[Range[10^6], ! PrimeQ@ # && PowerMod[2, (# - 1), #] == 1 &@((# - 1)^3 + 1) &] (* Michael De Vlieger, Dec 12 2015, after Farideh Firoozbakht at A001567 *)
-
is(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1};
for(n=1, 1e10, if(is((n-1)^3+1), print1(n, ", ")));
A303791
Carmichael numbers (A002997) that are central polygonal numbers (A002061).
Original entry on oeis.org
5310721, 2278677961, 9593125081, 29859667201, 467593730289953281, 98538479002618905601, 146842414757227736821
Offset: 1
A379656
Carmichael numbers that are the sum of 2 positive cubes.
Original entry on oeis.org
1729, 15841, 46657, 126217, 188461, 1082809, 1773289, 2628073, 3146221, 5049001, 6868261, 14469841, 19683001, 31146661, 40917241, 78091201, 92625121, 144218341, 252141121, 1836304561, 2616662881, 3035837161, 4354716961, 4828075561, 10779325921, 13200275881, 14235803713
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..831 (terms below 10^22)
- Jeffrey C. Lagarias, Problem 12048, Problems and Solutions, The American Mathematical Monthly, Vol. 125, No. 6 (2018), p. 562; JSTOR link; Carmichael in a Taxicab, Solution to Problem 12048 by Albert Stadler, ibid., Vol. 127, No. 1 (2020), p. 93; JSTOR link.
- Samuel S. Wagstaff, Ramanujan's taxicab number and its ilk, The Ramanujan Journal, Vol. 64, No. 3 (2024), pp. 761-764; ResearchGate link, author's copy.
-
carmQ[n_] := CompositeQ[n] && Divisible[n-1, CarmichaelLambda[n]]; Select[Range[200000], carmQ[#] && Length[PowersRepresentations[#, 2, 3]] > 0 &]
-
isA003325(n) = #select(v->min(v[1], v[2])>0, thue(thueinit('z^3+1);, n)) > 0; \\ Charles R Greathouse IV at A003325
is(n) = (n > 1) && !isprime(n) && !((n-1) % lcm(znstar(n)[2])) && isA003325(n);
Showing 1-4 of 4 results.
Comments