cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A265952 E.g.f.: Product_{k>=1} (1 + exp(x)*x^k).

Original entry on oeis.org

1, 1, 4, 21, 136, 1045, 9396, 99379, 1161952, 14904873, 208925380, 3207759511, 53349017184, 950481426349, 17959336305652, 360094085423115, 7656053670162496, 172173524035504849, 4077253037751090948, 101263725993658291615, 2627592803013505930240
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Cf. A265953.

Programs

  • Mathematica
    nmax=20; CoefficientList[Series[Product[(1+E^x*x^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

A115287 Decimal expansion of 1/(1+LambertW(1)).

Original entry on oeis.org

6, 3, 8, 1, 0, 3, 7, 4, 3, 3, 6, 5, 1, 1, 0, 7, 7, 8, 5, 2, 2, 4, 0, 7, 3, 8, 5, 5, 1, 9, 8, 8, 0, 3, 1, 4, 4, 4, 3, 9, 3, 3, 8, 4, 1, 2, 8, 9, 0, 2, 7, 6, 4, 0, 4, 1, 9, 4, 8, 3, 1, 9, 3, 6, 5, 0, 3, 4, 2, 1, 0, 1, 0, 5, 6, 7, 6, 0, 0, 8, 3, 0, 4, 1, 0, 0, 1, 8, 5, 2, 5, 1, 0, 5, 2, 7, 4, 8, 3, 3, 1, 5, 7, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 19 2006

Keywords

Examples

			0.63810374336511077852...
		

Crossrefs

Programs

Formula

Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - Amiram Eldar, Jul 04 2021

A322612 Expansion of e.g.f. Product_{k>=1} 1/(1 + log(1 - x)*x^k).

Original entry on oeis.org

1, 0, 2, 9, 68, 490, 5184, 53928, 696352, 9545184, 147901680, 2437886880, 44593856064, 861936989472, 17988878376000, 398199273907680, 9386173867046400, 233068382185213440, 6117261434418069504, 168414066137504272896, 4867992707164288773120, 147081824197157871866880, 4641822165217412602183680
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2018

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(factorial(n)*mul((1+log(1-x)*x^k)^(-1),k=1..n),x,n+1), x, n), n = 0 .. 22); # Muniru A Asiru, Dec 21 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 + Log[1 - x] x^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Log[1/(1 - x)]^d/d, {d, Divisors[k]}] x^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp(Sum_{k>=1} ( Sum_{d|k} log(1/(1 - x))^d/d ) * x^k).
a(n) ~ c * n! / r^n, where r = 0.74075364335169502373416717320773551326074821766... is the root of the equation r*log(1-r) = -1 and c = 1 / (r*(r/(1-r) - log(1-r)) * Product_{k>=2} (1 + log(1-r)*r^k) ) = 16.634865259935976898139371781860039862... - Vaclav Kotesovec, Dec 20 2018

A302399 Expansion of e.g.f. Product_{k>=1} 1/(1 - exp(x)*x^k)^k.

Original entry on oeis.org

1, 1, 8, 63, 628, 7405, 103266, 1630195, 28812344, 561715353, 11971270270, 276322667071, 6867229990644, 182651988444133, 5174629835814362, 155498722020145995, 4938797154614179696, 165259917542803746097, 5809661798192528407542, 214032701720169039806551, 8244827039453943163648940
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2018

Keywords

Examples

			Product_{k>=1} 1/(1 - exp(x)*x^k)^k = 1 + x/1! + 8*x^2/2! + 63*x^3/3! + 628*x^4/4! + 7405*x^5/5! + 103266*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-exp(x)*x^k)^k,k=1..100),x=0,21): seq(n!*coeff(a,x,n),n=0..20); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - Exp[x] x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: Product_{k>=1} 1/(1 - exp(x)*x^k)^k.
a(n) ~ c * n! / LambertW(1)^n, where c = 1/(1 + LambertW(1)) * Product_{j>=1} 1/(1 - LambertW(1)^j)^(j+1) = 115.50749040505570853455997830821388214033876679679... - Vaclav Kotesovec, Apr 07 2018

A347005 E.g.f.: Product_{k>=1} 1 / (1 - exp(x) * x^k / k!).

Original entry on oeis.org

1, 1, 5, 28, 205, 1856, 19964, 249005, 3535613, 56339884, 996009280, 19350090365, 409850078356, 9400728524669, 232154433941057, 6141705628777193, 173295665869432733, 5195039603196754564, 164890990869273983108, 5524278740902526776085, 194815729875439415542760
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - Exp[x] x^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: exp( Sum_{k>=1} ( Sum_{d|k} exp(d*x) / (d * ((k/d)!)^d) ) * x^k ).
E.g.f.: Product_{k>=1} 1 / (1 - Sum_{j>=k} binomial(j,k) * x^j / j!).
a(n) ~ c * n! / ((1 + LambertW(1)) * LambertW(1)^n), where c = Product_{k>=2} (1/(1 - LambertW(1)^(k-1)/k!)) = 1.487589725380080111479849424209442083... - Vaclav Kotesovec, Aug 10 2021
Showing 1-5 of 5 results.