A266276
a(n) is the smallest number k such that phi(k) = n*phi(k-1).
Original entry on oeis.org
2, 3, 7, 1261, 11242771
Offset: 1
a(3) = 7 because 7 is the smallest number k such that phi(k) = n*phi(k-1); phi(7) = 6 =3*phi(6) = 3*2.
-
a:=func; [a(n):n in[1..5]];
-
a(n) = my(k=2, epk=1, enk); while ((enk=eulerphi(k)) != n*epk, epk = enk; k++); k; \\ Michel Marcus, Feb 20 2020
A268126
Numbers n such that phi(n) = 4*phi(n-1).
Original entry on oeis.org
1261, 13651, 17557, 18721, 24511, 42121, 113611, 244531, 266071, 712081, 749911, 795691, 992251, 1080721, 1286731, 1458271, 1849471, 2271061, 2457691, 3295381, 3370771, 3414841, 3714751, 4061971, 4736491, 5314051, 5827081, 6566911, 6935083, 7303981, 7864081
Offset: 1
1261 is in the sequence because phi(1261) = 1152 = 4*phi(1260) = 4*288.
-
[n: n in [2..10^7] | EulerPhi(n) eq 4*EulerPhi(n-1)]
-
Select[Range@10000000, EulerPhi@# == 4 EulerPhi[# - 1] &] (* Vincenzo Librandi, Jan 27 2016 *)
-
isok(n) = (eulerphi(n) == 4*eulerphi(n-1)); \\ Michel Marcus, Jan 27 2016
Showing 1-2 of 2 results.
Comments