A266696 a(n) = Sum_{k=3..n} k*StirlingS2(n+1, k+1).
3, 34, 260, 1721, 10808, 67376, 427449, 2798432, 19042144, 135083103, 999573770, 7709458472, 61890269371, 516304085366, 4468459583648, 40058286666913, 371420337948828, 3556972620397996, 35138563919933649, 357654826207771292, 3746672499505598556, 40354065576745998303
Offset: 3
Examples
Let [n] = {1,2,3}. Then F = {{1,3},{2,3}} or {{1,2},{2,3}} or {{1,2},{1,3}}.
References
- Miklos Bona, Introduction to Enumerative Combinatorics, McGraw-Hill, 2007, pages 363-364.
- Peter Cameron, Combinatorics: Topics, Techniques, Algorithms, Cambridge University Press, 1994, pages 100-102.
Links
- Ross La Haye, Quasi-Sunflower Sperner Families and Dedekind's Problem, ResearchGate, 2017.
- Wikipedia, Sperner family.
- Wikipedia, Sunflower.
Programs
-
Maple
seq(add(k*Stirling2(n+1,k+1),k=3..n), n=3..40); # Robert Israel, Jan 03 2016
-
Mathematica
Table[Sum[k*StirlingS2[n+1,k+1],{k,3,n}],{n,3,14}]
-
PARI
a(n) = sum(k=3, n, k*stirling(n+1, k+1, 2)); \\ Michel Marcus, Jan 03 2016
-
Perl
use ntheory ":all"; sub a266696 { my $n=shift; vecsum(map { vecprod($,stirling($n+1,$+1,2)) } 3..$n); } # Dana Jacobsen, Jan 03 2016
Formula
a(n) = Sum_{k=3..n} k * StirlingS2(n+1, k+1).
a(n) = B(n+2) - 2*B(n+1) - 3^n + 2^n, where B(n) is the n-th Bell number. - Ross La Haye, Feb 16 2017
E.g.f.: exp(x-1)*(exp(x) - 1)*(exp(exp(x)) - exp(x+1)). - Stefano Spezia, Jul 06 2021
Extensions
More terms from Michel Marcus, Jan 03 2016
Comments