cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A038698 Excess of 4k-1 primes over 4k+1 primes, beginning with prime 2.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 3, 4, 3, 4, 5, 4, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 5, 4, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 6, 5, 6, 5, 6, 5, 6
Offset: 1

Views

Author

Keywords

Comments

a(n) < 0 for infinitely many values of n. - Benoit Cloitre, Jun 24 2002
First negative value is a(2946) = -1, which is for prime 26861. - David W. Wilson, Sep 27 2002

References

  • Stan Wagon, The Power of Visualization, Front Range Press, 1994, p. 2.

Crossrefs

Cf. A112632 (race of 3k-1 and 3k+1 primes), A216057, A269364.
Cf. A156749 (sequence showing Chebyshev bias in prime races (mod 4)), A199547, A267097, A267098, A267107, A292378.
List of primes p such that a(p) = 0 is A007351. List of primes p such that a(p) < 0 is A199547. List of primes p such that a(p) = -1 is A051025. List of integers k such that a(prime(k)) = -1 is A051024. - Ya-Ping Lu, Jan 18 2025

Programs

  • Maple
    ans:=[0]; ct:=0; for n from 2 to 2000 do
    p:=ithprime(n); if (p mod 4) = 3 then ct:=ct+1; else ct:=ct-1; fi;
    ans:=[op(ans),ct]; od: ans; # N. J. A. Sloane, Jun 24 2016
  • Mathematica
    FoldList[Plus, 0, Mod[Prime[Range[2,110]], 4] - 2]
    Join[{0},Accumulate[If[Mod[#,4]==3,1,-1]&/@Prime[Range[2,110]]]] (* Harvey P. Dale, Apr 27 2013 *)
  • PARI
    for(n=2,100,print1(sum(i=2,n,(-1)^((prime(i)+1)/2)),","))
    
  • Python
    from sympy import nextprime; a, p = 0, 2; R = [a]
    for _ in range(2,88): p=nextprime(p); a += p%4-2; R.append(a)
    print(*R, sep = ', ')  # Ya-Ping Lu, Jan 18 2025

Formula

a(n) = Sum_{k=2..n} (-1)^((prime(k)+1)/2). - Benoit Cloitre, Jun 24 2002
a(n) = (Sum_{k=1..n} prime(k) mod 4) - 2*n (assuming that x mod 4 > 0). - Thomas Ordowski, Sep 21 2012
From Antti Karttunen, Oct 01 2017: (Start)
a(n) = A267098(n) - A267097(n).
a(n) = A292378(A000040(n)).
(End)
From Ridouane Oudra, Nov 04 2024: (Start)
a(n) = Sum_{k=2..n} i^(prime(k)+1), where i is the imaginary unit.
a(n) = Sum_{k=2..n} sin(3*prime(k)*Pi/2).
a(n) = Sum_{k=2..n} A163805(prime(k)).
a(n) = Sum_{k=2..n} A212159(k). (End)
a(n) = a(n-1) + prime(n) (mod 4) - 2, n >= 2. - Ya-Ping Lu, Jan 18 2025

A267099 Fully multiplicative involution swapping the positions of 4k+1 and 4k+3 primes: a(1) = 1; a(prime(k)) = A267101(k), a(x*y) = a(x)*a(y) for x, y > 1.

Original entry on oeis.org

1, 2, 5, 4, 3, 10, 13, 8, 25, 6, 17, 20, 7, 26, 15, 16, 11, 50, 29, 12, 65, 34, 37, 40, 9, 14, 125, 52, 19, 30, 41, 32, 85, 22, 39, 100, 23, 58, 35, 24, 31, 130, 53, 68, 75, 74, 61, 80, 169, 18, 55, 28, 43, 250, 51, 104, 145, 38, 73, 60, 47, 82, 325, 64, 21, 170, 89, 44, 185, 78, 97, 200, 59, 46, 45, 116, 221, 70, 101
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

Lexicographically earliest self-inverse permutation of natural numbers where each prime of the form 4k+1 is replaced by a prime of the form 4k+3 and vice versa, with the composite numbers determined by multiplicativity.
Fully multiplicative with a(p_n) = p_{A267100(n)} = A267101(n).
Maps each term of A004613 to some term of A004614, each (nonzero) term of A001481 to some term of A268377 and each term of A004431 to some term of A268378 and vice versa.
Sequences A072202 and A078613 are closed with respect to this permutation.

Crossrefs

Cf. A000035, A000040, A000720, A010051, A020639, A032742, A267100, A267101, A354102 (Möbius transform), A354103 (inverse Möbius transform), A354192 (fixed points).
Cf. also A108548.

Programs

  • PARI
    up_to = 2^16;
    A267097list(up_to) = { my(v=vector(up_to),i=0,c=0); forprime(p=2,prime(up_to), if(1==(p%4), c++); i++; v[i] = c); (v); };
    v267097 = A267097list(up_to);
    A267097(n) = v267097[n];
    A267098(n) = ((n-1)-A267097(n));
    list_primes_of_the_form(up_to,m,k) = { my(v=vector(up_to),i=0); forprime(p=2,, if(k==(p%m), i++; v[i] = p; if(i==up_to,return(v)))); };
    v002144 = list_primes_of_the_form(2*up_to,4,1);
    A002144(n) = v002144[n];
    v002145 = list_primes_of_the_form(2*up_to,4,3);
    A002145(n) = v002145[n];
    A267101(n) = if(1==n,2,if(1==(prime(n)%4),A002145(A267097(n)),A002144(A267098(n))));
    A267099(n) = { my(f=factor(n)); for(k=1,#f~,f[k,1] = A267101(primepi(f[k,1]))); factorback(f); }; \\ Antti Karttunen, May 18 2022
    (Scheme, with memoization-macro definec)
    (definec (A267099 n) (cond ((<= n 1) n) ((= 1 (A010051 n)) (A267101 (A000720 n))) (else (* (A267099 (A020639 n)) (A267099 (A032742 n))))))

Formula

a(1) = 1; after which, if n is k-th prime [= A000040(k)], then a(n) = A267101(k), otherwise a(A020639(n)) * a(A032742(n)).
Other identities. For all n >= 1:
a(A000040(n)) = A267101(n).
a(2*n) = 2*a(n).
a(3*n) = 5*a(n).
a(5*n) = 3*a(n).
a(7*n) = 13*a(n).
a(11*n) = 17*a(n).
etc. See examples in A267101.
A000035(n) = A000035(a(n)). [Preserves the parity of n.]
A005094(a(n)) = -A005094(n).
A079635(a(n)) = -A079635(n).

Extensions

Verbal description prefixed to the name by Antti Karttunen, May 19 2022

A292377 a(1) = 0, and for n > 1, a(n) = a(A252463(n)) + [n == 3 (mod 4)].

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 0, 1, 3, 1, 3, 2, 2, 0, 3, 0, 4, 1, 1, 3, 5, 1, 0, 3, 1, 2, 5, 2, 6, 0, 2, 3, 3, 0, 6, 4, 4, 1, 6, 1, 7, 3, 1, 5, 8, 1, 0, 0, 4, 3, 8, 1, 2, 2, 3, 5, 9, 2, 9, 6, 2, 0, 2, 2, 10, 3, 4, 3, 11, 0, 11, 6, 1, 4, 3, 4, 12, 1, 0, 6, 13, 1, 4, 7, 6, 3, 13, 1, 3, 5, 5, 8, 5, 1, 13, 0, 3, 0, 13, 4, 14, 3, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2017

Keywords

Comments

For numbers > 1, iterate the map x -> A252463(x) which divides even numbers by 2 and shifts every prime in the prime factorization of odd n one index step towards smaller primes. a(n) counts the numbers of the form 4k+3 encountered until 1 has been reached. The count includes also n itself if it is of the form 4k+3 (A004767).
In other words, locate the node which contains n in binary tree A005940 and traverse from that node towards the root, counting all numbers of the form 4k+3 that occur on the path.

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := a[n] = a[Which[n == 1, 1, EvenQ@ n, n/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n]] + Boole[Mod[n, 4] == 3]; Array[a, 105]

Formula

a(1) = 0, and for n > 1, a(n) = a(A252463(n)) + floor((n mod 4)/3).
Equivalently, a(2n) = a(n), and for odd numbers n > 1, a(n) = a(A064989(n)) + [n == 3 (mod 4)].
a(n) = A000120(A292383(n)).
Other identities. For n >= 1:
a(n) >= A292376(n).
a(A000040(n)) = A267098(n).
1 + a(n) - A292375(n) = A292378(n).
For n >= 2, a(n) + A292375(n) = A061395(n).

A267097 a(n) = number of 4k+1 primes among first n primes; least monotonic left inverse of A080147.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 11, 12, 12, 12, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, 18, 19, 19, 20, 21, 21, 21, 21, 21, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 28, 28, 29, 29, 29, 30, 31, 31, 32, 32, 33, 34, 34, 34, 35, 35, 35, 36, 37, 38, 39, 39, 40, 40, 41
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

a(n) = number of 4k+1 primes (A002144) among primes in range 2 .. A000040(n).

Crossrefs

Programs

  • Mathematica
    a[n_]:=Length[Select[Prime[Range[n]],IntegerQ[(#-1)/4] &]]; Array[a,84] (* Stefano Spezia, May 01 2025 *)

Formula

Other identities. For all n >= 1:
a(A080147(n)) = n.
a(n) + A267098(n) = n-1.

A267101 2 followed by permutation of odd primes, where each n-th prime of the form 4k+1 (A002144) has been replaced with the n-th prime of the form 4k+3 (A002145) and vice versa.

Original entry on oeis.org

2, 5, 3, 13, 17, 7, 11, 29, 37, 19, 41, 23, 31, 53, 61, 43, 73, 47, 89, 97, 59, 101, 109, 67, 71, 79, 113, 137, 83, 103, 149, 157, 107, 173, 127, 181, 131, 193, 197, 139, 229, 151, 233, 163, 167, 241, 257, 269, 277, 179, 191, 281, 199, 293, 211, 313, 223, 317, 227, 239, 337, 251, 349, 353, 263, 271, 373, 283, 389
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

After 2, for each n >= 1, swap the places of primes A002144(n) and A002145(n) in A000040.

Examples

			For n=2, for which A000040(2) = 3, the first prime of the form 4k+3, we select the first prime of the form 4k+1, which is 5, thus a(2) = 5.
For n=3, for which A000040(3) = 5, the first prime of the form 4k+1, we select the first prime of the form 4k+3, which is 3, thus a(3) = 3.
For n=4, for which A000040(4) = 7, the second prime of the form 4k+3, we select the second prime of the form 4k+1, which is 13, thus a(4) = 13.
For n=5, for which A000040(5) = 11, the third prime of the form 4k+3, we select the third prime of the form 4k+1, which is 17, thus a(5) = 17.
		

Crossrefs

Programs

Formula

a(1) = 2; after which, if prime(n) modulo 4 = 1, a(n) = A002145(A267097(n)), otherwise a(n) = A002144(A267098(n)).
a(n) = A000040(A267100(n)).
a(n) = A267099(A000040(n)).

A267107 "Chebyshev's bat permutation": a(1) = 1, a(A080147(n)) = A080148(a(n)), a(A080148(n)) = A080147(a(n)).

Original entry on oeis.org

1, 3, 2, 7, 6, 5, 4, 16, 13, 14, 12, 11, 9, 10, 35, 8, 29, 31, 30, 26, 23, 25, 21, 27, 22, 20, 24, 74, 17, 19, 18, 62, 67, 66, 15, 65, 54, 57, 51, 58, 55, 56, 45, 48, 43, 59, 50, 44, 53, 47, 39, 152, 49, 37, 41, 42, 38, 40, 46, 144, 130, 32, 139, 137, 36, 34, 33, 118, 136, 129, 128, 113, 121, 28, 108, 122, 125
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Comments

This is a self-inverse permutation of natural numbers.

Crossrefs

Cf. A268393 (record positions), A268394 (record values).
Cf. A267100, A267105, A267106 and also A270193, A270194, A270199, A270201, A270202 for other similarly constructed permutations based on prime distribution biases.

Programs

  • PARI
    allocatemem(2^30);
    default(primelimit,4294965247);
    uplim = 2^20;
    uplim2 = 366824; \\ Very ad hoc.
    v080147 = vector(uplim);
    v080148 = vector(uplim);
    v267097 = vector(uplim);
    v267107 = vector(uplim);
    v267097[1] = 0; c = 0; v47i = 0; v48i = 0; for(n=2, uplim, if((1 == (prime(n)%4)), c++; v47i++; v080147[v47i] = n, v48i++; v080148[v48i] = n); v267097[n] = c; if(!(n%32768),print1(" n=",n)));
    A080147(n) = v080147[n];
    A080148(n) = v080148[n];
    A267097(n) = v267097[n];
    A267098(n) = (n - A267097(n))-1;
    A267107(n) = v267107[n];
    v267107[1] = 1; for(n=2, uplim2, if((1 == (prime(n) % 4)), v267107[n] = A080148(A267107(A267097(n))), v267107[n] = A080147(A267107(A267098(n))));  if(!(n%32768),print1(" n=",n)));
    for(n=1, uplim2, write("b267107.txt", n, " ", A267107(n)));
    
  • Scheme
    ;; With memoization-macro definec
    (definec (A267107 n) (cond ((<= n 1) n) ((= 1 (modulo (A000040 n) 4)) (A080148 (A267107 (A267097 n)))) (else (A080147 (A267107 (A267098 n))))))

Formula

a(1) = 1; and for n > 1, if prime(n) modulo 4 = 1, a(n) = A080148(a(A267097(n))), otherwise a(n) = A080147(a(A267098(n))).

Extensions

Name changed, the old name was "Manta moth permutation" - Antti Karttunen, Dec 10 2019

A267100 Self-inverse permutation of natural numbers: a(1) = 1, a(A080147(n)) = A080148(n), a(A080148(n)) = A080147(n).

Original entry on oeis.org

1, 3, 2, 6, 7, 4, 5, 10, 12, 8, 13, 9, 11, 16, 18, 14, 21, 15, 24, 25, 17, 26, 29, 19, 20, 22, 30, 33, 23, 27, 35, 37, 28, 40, 31, 42, 32, 44, 45, 34, 50, 36, 51, 38, 39, 53, 55, 57, 59, 41, 43, 60, 46, 62, 47, 65, 48, 66, 49, 52, 68, 54, 70, 71, 56, 58, 74, 61, 77, 63, 64, 78, 79, 67, 80, 82, 69, 72, 73, 75, 84, 76, 87, 81
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Crossrefs

Cf. also A267107 (a more recursed variant).

Formula

a(1) = 1; for n > 1, if prime(n) mod 4 = 1, then a(n) = A080148(A267097(n)), otherwise a(n) = A080147(A267098(n)).
Other identities. For all n >= 1:
a(n) = A000720(A267101(n)).

A267105 Permutation of natural numbers: a(1) = 1, a(A080147(n)) = 1+(2*a(n)), a(A080148(n)) = 2*a(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 12, 9, 10, 13, 11, 14, 16, 15, 24, 17, 18, 20, 25, 26, 22, 19, 21, 27, 28, 32, 23, 29, 30, 48, 33, 34, 31, 36, 49, 40, 50, 35, 52, 37, 44, 41, 51, 38, 42, 54, 56, 53, 45, 64, 39, 46, 43, 58, 55, 60, 57, 65, 96, 47, 66, 68, 59, 61, 62, 97, 72, 67, 69, 98, 80, 63, 100, 70, 73, 99, 81, 101, 104, 71, 74
Offset: 1

Views

Author

Antti Karttunen, Feb 01 2016

Keywords

Crossrefs

Formula

a(1) = 1; and for n > 1, if prime(n) mod 4 = 1, then a(n) = 1 + 2*a(A267097(n)), otherwise a(n) = 2*a(A267098(n)).
Showing 1-8 of 8 results.