A032354
j-invariants for orders of class number 1.
Original entry on oeis.org
0, 1728, -3375, 8000, -32768, 54000, 287496, -884736, -12288000, 16581375, -884736000, -147197952000, -262537412640768000
Offset: 0
- H. Cohn, Introduction to the Construction of Class Fields, Cambridge; p. 183.
- D. A. Cox, Primes of the form x^2+ny^2, Wiley, p. 261.
See
A267195 for (essentially) the cube roots of these numbers.
See
A133675 (times -1) for the corresponding discriminants.
A199743
Rounded near-integers (exp(Pi*sqrt(h)) - 744)^(1/3) where h is A003173(n+3) (Heegner numbers of the form 4p-1 where p is prime).
Original entry on oeis.org
15, 32, 96, 960, 5280, 640320
Offset: 1
a(1) = 15 because 15^3 + 744 ~ exp(Pi*sqrt(7)).
a(2) = 32 because 32^3 + 744 ~ exp(Pi*sqrt(11)).
a(3) = 96 because 96^3 + 744 ~ exp(Pi*sqrt(19)).
a(4) = 960 because 960^3 + 744 ~ exp(Pi*sqrt(43)).
a(5) = 5280 because 5280^3 + 744 ~ exp(Pi*sqrt(67)).
a(6) = 640320 because 640320^3 + 744 ~ exp(Pi*sqrt(163)).
A267195 is a supersequence (negated).
A357211
a(n) is the real cube root of the value of the j-function for the n-th Heegner number A003173(n).
Original entry on oeis.org
12, 20, 0, -15, -32, -96, -960, -5280, -640320
Offset: 1
Showing 1-3 of 3 results.
Comments