A267195
The j-invariants in A032354 are perfect cubes, except for two terms that have an extra factor of 2 or 3. Ignore these two extra factors and take the cube roots.
Original entry on oeis.org
0, 12, -15, 20, -32, 30, 66, -96, -160, 255, -960, -5280, -640320
Offset: 1
- H. Cohn, Introduction to the Construction of Class Fields, Cambridge; p. 183.
A305474
Coefficients of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .
Original entry on oeis.org
0, 1, -1728, 1, 3375, 1, -8000, 1, 32768, 1, -54000, 1, -121287375, 191025, 1, -287496, 1, 884736, 1, -681472000, -1264000, 1, 12771880859375, -5151296875, 3491750, 1, 14670139392, -4834944, 1, 12288000, 1, -16581375, 1, 1566028350940383, -58682638134
Offset: 1
D | 0 1 2 3
----+---------------------------------------------
-3 | 0, 1;
-4 | -1728, 1;
-7 | 3375, 1;
-8 | -8000, 1;
-11 | 32768, 1;
-12 | -54000, 1;
-15 | -121287375, 191025, 1;
-16 | -287496, 1;
-19 | 884736, 1;
-20 | -681472000, -1264000, 1;
-23 | 12771880859375, -5151296875, 3491750, 1;
-24 | 14670139392, -4834944, 1;
-27 | 12288000, 1;
-28 | -16581375, 1;
-31 | 1566028350940383, -58682638134, 39491307, 1;
-32 | 12167000000, -52250000, 1;
-35 | -134217728000, 117964800, 1;
-36 | -1790957481984, -153542016, 1;
-
d(n) = 2*n+n%2;
T(n, k) = polcoef(polclass(-d(n)), k);
tabf(nn) = for(n=1, nn, for(k=0, poldegree(polclass(-d(n))), print1(T(n, k), ", ")); print)
A305475
Constant of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .
Original entry on oeis.org
0, -1728, 3375, -8000, 32768, -54000, -121287375, -287496, 884736, -681472000, 12771880859375, 14670139392, 12288000, -16581375, 1566028350940383, 12167000000, -134217728000, -1790957481984, 20919104368024767633, 9103145472000, 884736000
Offset: 1
A305500
a(n) = (-1) * j((1 + sqrt(-A003173(n+2)))/2).
Original entry on oeis.org
0, 3375, 32768, 884736, 884736000, 147197952000, 262537412640768000
Offset: 1
j((1+sqrt( -3))/2) = 0.
j((1+sqrt( -7))/2) = -3375 = (-1) * 15^3.
j((1+sqrt( -11))/2) = -32768 = (-1) * 32^3.
j((1+sqrt( -19))/2) = -884736 = (-1) * 96^3.
j((1+sqrt( -43))/2) = -884736000 = (-1) * 960^3.
j((1+sqrt( -67))/2) = -147197952000 = (-1) * 5280^3.
j((1+sqrt(-163))/2) = -262537412640768000 = (-1) * 640320^3.
A305494
Let s(D) = Sum_{(a,b,c)} j((-b+sqrt(D))/(2*a)) where (a,b,c) is taken over all the primitive reduced binary quadratic forms a*x^2+b*xy+c*y^2 with b^2-4*ac = D. This sequence is s(D) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .
Original entry on oeis.org
0, 1728, -3375, 8000, -32768, 54000, -191025, 287496, -884736, 1264000, -3491750, 4834944, -12288000, 16581375, -39491307, 52250000, -117964800, 153542016, -331531596, 425692800, -884736000, 1122662608, -2257834125, 2835810000, -5541101568, 6896880000, -13136684625
Offset: 1
In the case D = -15,
j((1+sqrt(-15))/2) + j((1+sqrt(-15))/4) = (-191025-85995*sqrt(5))/2 + (-191025+85995*sqrt(5))/2 = -191025.
----+-------------------------------------------+---------
D | Coefficients of Hilbert class polynomial | a(n)
----+-------------------------------------------+---------
-3 | 0, 1; | 0
-4 | -1728, 1; | 1728
-7 | 3375, 1; | -3375
-8 | -8000, 1; | 8000
-11 | 32768, 1; | -32768
-12 | -54000, 1; | 54000
-15 | -121287375, 191025, 1; | -191025
-16 | -287496, 1; | 287496
-19 | 884736, 1; | -884736
-20 | -681472000, -1264000, 1; | 1264000
-23 | 12771880859375, -5151296875, 3491750, 1;| -3491750
-24 | 14670139392, -4834944, 1; | 4834944
Showing 1-5 of 5 results.