A267315 Decimal expansion of the Dirichlet eta function at 4.
9, 4, 7, 0, 3, 2, 8, 2, 9, 4, 9, 7, 2, 4, 5, 9, 1, 7, 5, 7, 6, 5, 0, 3, 2, 3, 4, 4, 7, 3, 5, 2, 1, 9, 1, 4, 9, 2, 7, 9, 0, 7, 0, 8, 2, 9, 2, 8, 8, 8, 6, 0, 4, 4, 2, 2, 2, 6, 0, 4, 1, 8, 8, 5, 1, 3, 6, 0, 5, 5, 3, 9, 1, 6, 3, 5, 9, 7, 7, 4, 0, 7, 3, 7, 2, 9, 5, 9, 3, 1, 4, 4, 8, 9, 8, 7, 4, 2, 7, 5, 7, 8, 8, 6, 6, 9, 6, 2, 1, 6, 9, 5, 3, 7, 3, 9, 9, 6, 1, 2
Offset: 0
Examples
eta(4) = 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 + ... = 0.9470328294972459175765032344735219149279070829288860...
Links
- OEIS Wiki, Euler's alternating zeta function.
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function.
- Wikipedia, Dirichlet Eta Function.
Programs
-
Magma
pi:= 7*Pi(RealField(110))^4 / 720; Reverse(Intseq(Floor(10^100*pi))); // Vincenzo Librandi, Feb 04 2016
-
Mathematica
RealDigits[(7 Pi^4)/720, 10, 120][[1]]
-
PARI
7*Pi^4/720 \\ Michel Marcus, Feb 01 2016
-
Sage
s = RLF(0); s RealField(110)(s) for i in range(1,10000): s += -((-1)^i/((i)^4)) print(s) # Terry D. Grant, Aug 04 2016
Formula
eta(4) = Sum_{k > 0} (-1)^(k+1)/k^4 = (7*Pi^4)/720.
eta(4) = Lim_{n -> infinity} A120296(n)/A334585(n) = (7/8)*A013662. - Petros Hadjicostas, May 07 2020