cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267315 Decimal expansion of the Dirichlet eta function at 4.

Original entry on oeis.org

9, 4, 7, 0, 3, 2, 8, 2, 9, 4, 9, 7, 2, 4, 5, 9, 1, 7, 5, 7, 6, 5, 0, 3, 2, 3, 4, 4, 7, 3, 5, 2, 1, 9, 1, 4, 9, 2, 7, 9, 0, 7, 0, 8, 2, 9, 2, 8, 8, 8, 6, 0, 4, 4, 2, 2, 2, 6, 0, 4, 1, 8, 8, 5, 1, 3, 6, 0, 5, 5, 3, 9, 1, 6, 3, 5, 9, 7, 7, 4, 0, 7, 3, 7, 2, 9, 5, 9, 3, 1, 4, 4, 8, 9, 8, 7, 4, 2, 7, 5, 7, 8, 8, 6, 6, 9, 6, 2, 1, 6, 9, 5, 3, 7, 3, 9, 9, 6, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			eta(4) = 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 + ... = 0.9470328294972459175765032344735219149279070829288860...
		

Crossrefs

Programs

  • Magma
    pi:= 7*Pi(RealField(110))^4 / 720; Reverse(Intseq(Floor(10^100*pi))); // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    RealDigits[(7 Pi^4)/720, 10, 120][[1]]
  • PARI
    7*Pi^4/720 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1,10000): s += -((-1)^i/((i)^4))
    print(s) # Terry D. Grant, Aug 04 2016

Formula

eta(4) = Sum_{k > 0} (-1)^(k+1)/k^4 = (7*Pi^4)/720.
eta(4) = Lim_{n -> infinity} A120296(n)/A334585(n) = (7/8)*A013662. - Petros Hadjicostas, May 07 2020