cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000583 Fourth powers: a(n) = n^4.

Original entry on oeis.org

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921
Offset: 0

Views

Author

Keywords

Comments

Figurate numbers based on 4-dimensional regular convex polytope called the 4-measure polytope, 4-hypercube or tesseract with Schlaefli symbol {4,3,3}. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004
Totally multiplicative sequence with a(p) = p^4 for prime p. - Jaroslav Krizek, Nov 01 2009
The binomial transform yields A058649. The inverse binomial transforms yields the (finite) 0, 1, 14, 36, 24, the 4th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
Generate Pythagorean triangles with parameters a and b to get sides of lengths x = b^2-a^2, y = 2*a*b, and z = a^2 + b^2. In particular use a=n-1 and b=n for a triangle with sides (x1,y1,z1) and a=n and b=n+1 for another triangle with sides (x2,y2,z2). Then x1*x2 + y1*y2 + z1*z2 = 8*a(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) is the largest integer k such that k^4 + n is a multiple of k + n. Also, for n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n^2. - Derek Orr, Sep 04 2014
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
a(n+2)/2 is the area of a trapezoid with vertices at (T(n), T(n+1)), (T(n+1), T(n)), (T(n+1), T(n+2)), and (T(n+2), T(n+1)) with T(n)=A000292(n) for n >= 0. - J. M. Bergot, Feb 16 2018

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
  • Dov Juzuk, Curiosa 56: An interesting observation, Scripta Mathematica 6 (1939), 218.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 47.

Crossrefs

Programs

Formula

a(n) = A123865(n)+1 = A002523(n)-1.
Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001
G.f.: x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).
Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: (x + 7*x^2 + 6*x^3 + x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005
Sum_{k>0} 1/a(k) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009
a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4). [Worpitzky's identity for powers of 4. See, e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n*A177342(n) - Sum_{i=1..n-1} A177342(i) - (n - 1), with n > 1. - Bruno Berselli, May 07 2010
a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013
From Amiram Eldar, Jan 20 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/720 (A267315).
Product_{n>=2} (1 - 1/a(n)) = sinh(Pi)/(4*Pi). (End)

A033999 a(n) = (-1)^n.

Original entry on oeis.org

1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1
Offset: 0

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998

Keywords

Comments

(-1)^(n+1) = signed area of parallelogram with vertices (0,0), U=(F(n),F(n+1)), V=(F(n+1),F(n+2)), where F = A000045 (Fibonacci numbers). The area of every such parallelogram is 1. The signed area is -1 if and only if F(n+1)^2 > F(n)*F(n+2), or, equivalently, n is even, or, equivalently, the vector U is "above" V, indicating that U and V "cross" as n -> n+1. - Clark Kimberling, Sep 09 2013
Periodic with period length 2. - Ray Chandler, Apr 03 2017
From Bernard Schott, May 11 2022: (Start)
Cesàro mean theorem: When a(n) has a limit (finite or infinite) in the usual sense, then c(n) = (a(1)+...+a(n))/n has the same Cesàro limit, but the converse is false. This sequence is a counterexample in the case of a finite Cesàro limit (see A237420 for counterexample with an infinite Cesàro limit).
This sequence is not convergent in the usual sense because a(2n) = 1 while a(2n+1) = -1; the successive arithmetic means c(n) of the first n terms of the sequence are 1/1, 0/2, 1/3, 0/4, 1/5, 0/6, ... so c(2n) = 1/(2n+1) and c(2n+1) = 0, hence the Cesàro limit is 0 because c(n) -> 0 when n -> oo.
In fact, when sequence a(n) is "Period k: [a1, a2, ..., ak]", then the Cesàro limit c of this sequence is (a1+a2+...+ak)/k.
Note that the converse of the theorem is true iff a(n) is monotonic (End).

Examples

			G.f. = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 - x^7 + x^8 - x^9 + x^10 - x^11 + x^12 + ...
		

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.

Crossrefs

About Cesàro mean theorem: A114112, A237420.
Cf. A072691 (abs. val. Dgf at s=2), A197070 (abs. val. Dgf at s=3), A267315 (abs. val. Dgf at s=4).

Programs

Formula

G.f.: 1/(1+x).
E.g.f.: exp(-x).
Linear recurrence: a(0)=1, a(n)=-a(n-1) for n>0. - Jaume Oliver Lafont, Mar 20 2009
Sum_{k=0..n} a(k) = A059841(n). - Jaume Oliver Lafont, Nov 21 2009
Sum_{k>=0} a(k)/(k+1) = log(2). - Jaume Oliver Lafont, Mar 30 2010
Euler transform of length 2 sequence [ -1, 1]. - Michael Somos, Mar 21 2011
Moebius transform is length 2 sequence [ -1, 2]. - Michael Somos, Mar 21 2011
a(n) = -b(n) where b(n) = multiplicative with b(2^e) = -1 if e>0, b(p^e) = 1 if p>2. - Michael Somos, Mar 21 2011
a(n) = a(-n) = a(n + 2) = cos(n * Pi). a(n) = c_2(n) if n>1 where c_k(n) is Ramanujan's sum. - Michael Somos, Mar 21 2011
a(n) = (1/2)*Product_{k=0..2*n-1} 2*cos((2*k+1)*Pi/(4*n)), n >= 1. See the product given in the Oct 21 2013 formula comment in A056594, and replace there n -> 2*n. - Wolfdieter Lang, Oct 23 2013
D.g.f.: (2^(1-s)-1)*zeta(s) = -eta(s) (the Dirichlet eta function). - Ralf Stephan, Mar 27 2015
From Ilya Gutkovskiy, Aug 17 2016: (Start)
a(n) = T_n(-1), where T_n(x) are the Chebyshev polynomials of the first kind.
Binomial transform of A122803. (End)
a(n) = exp(i*Pi*n) = exp(-i*Pi*n). - Carauleanu Marc, Sep 15 2016
a(n) = Sum_{k=0..n} (-1)^k*A063007(n, k), n >= 0. - Wolfdieter Lang, Sep 13 2016

A120296 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^4.

Original entry on oeis.org

1, 15, 1231, 19615, 12280111, 4090037, 9824498837, 157151464517, 38193952437631, 7637983935923, 111835788321880643, 111830093529238643, 3194097388508809394723, 3194009594644356242723, 15970381078317764649391
Offset: 1

Views

Author

Alexander Adamchuk, Jul 10 2006

Keywords

Comments

p divides a(p-1) for prime p > 2 - similar to Wolstenholme's theorem for A007406(n) (= numerator of Sum_{k=1..n} 1/k^2) and for A007410(n) (= numerator of Sum_{k=1..n} 1/k^4).
Lim_{n -> infinity} a(n)/A334585(n) = A267315 = (7/8)*A013662. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 15/16, 1231/1296, 19615/20736, 12280111/12960000, 4090037/4320000, 9824498837/10372320000, ... = A120296/A334585. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A007406, A007410, A013662, A119682, A267315, A334585 (denominators).

Programs

  • Mathematica
    Numerator[Table[Sum[(-1)^(k+1)/k^4,{k,1,n}],{n,1,20}]]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^4)); \\ Michel Marcus, May 07 2020

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/k^4).

Extensions

Name edited by Petros Hadjicostas, May 07 2020

A267316 Decimal expansion of the Dirichlet eta function at 5.

Original entry on oeis.org

9, 7, 2, 1, 1, 9, 7, 7, 0, 4, 4, 6, 9, 0, 9, 3, 0, 5, 9, 3, 5, 6, 5, 5, 1, 4, 3, 5, 5, 3, 4, 6, 9, 5, 3, 2, 5, 5, 3, 5, 1, 3, 3, 6, 2, 0, 3, 3, 0, 4, 3, 2, 6, 1, 2, 2, 5, 8, 0, 5, 6, 3, 5, 5, 3, 4, 8, 1, 5, 8, 6, 5, 4, 2, 4, 6, 3, 8, 8, 9, 1, 7, 7, 5, 0, 4, 0, 4, 1, 2, 3, 9, 7, 3, 1, 2, 5, 0, 2, 8, 5, 5, 8, 9, 4, 0, 7, 0, 1, 2, 4, 8, 9, 6, 8, 2, 0, 9, 7, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			1/1^5 - 1/2^5 + 1/3^5 - 1/4^5 + 1/5^5 - 1/6^5 + ... = 0.972119770446909305935655143553469532553513362...
		

Crossrefs

Cf. A002162 (value at 1), A013663, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A136676, A334604.

Programs

  • Mathematica
    RealDigits[(15 Zeta[5])/16, 10, 120][[1]]
  • PARI
    15*zeta(5)/16 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s += -((-1)^i/((i)^5))
    print(s) # Terry D. Grant, Aug 05 2016

Formula

Equals Sum_{k > 0} (-1)^(k+1)/k^5 = (15*zeta(5))/16.
Equals Lim_{n -> infinity} A136676(n)/A334604(n). - Petros Hadjicostas, May 07 2020

A275703 Decimal expansion of the Dirichlet eta function at 6.

Original entry on oeis.org

9, 8, 5, 5, 5, 1, 0, 9, 1, 2, 9, 7, 4, 3, 5, 1, 0, 4, 0, 9, 8, 4, 3, 9, 2, 4, 4, 4, 8, 4, 9, 5, 4, 2, 6, 1, 4, 0, 4, 8, 8, 5, 6, 9, 3, 4, 6, 9, 3, 2, 6, 8, 8, 8, 0, 3, 4, 8, 3, 3, 3, 9, 3, 2, 5, 4, 1, 9, 6, 8, 0, 2, 1, 8, 6, 2, 7, 1, 7, 1, 3, 5, 7, 3, 9, 3, 7, 2, 9, 1, 1, 2, 7, 9, 5, 5, 9, 4, 6, 4
Offset: 0

Views

Author

Terry D. Grant, Aug 05 2016

Keywords

Comments

It appears that each sum of a Dirichlet eta function is 1/2^(x-1) less than the zeta(x), where x is a positive integer > 1. In this case, eta(x) = eta(6) = (31/32)*zeta(6) = 31*(Pi^6)/30240. Therefore eta(6) = 1/2^(6-1) or 1/32nd less than zeta(6) (see A013664). [Edited by Petros Hadjicostas, May 07 2020]

Examples

			31*(Pi^6)/30240 = 0.9855510912974...
		

Crossrefs

Cf. A002162 (decimal expansion of value at 1), A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275710 (value at 7).

Programs

  • Mathematica
    RealDigits[31*(Pi^6)/30240,10,100]
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^6
    print(s) # Terry D. Grant, Aug 05 2016

Formula

eta(6) = 31*(Pi^6)/30240 = 31*A092732/30240 = Sum_{n>=1} (-1)^(n+1)/n^6.
eta(6) = lim_{n -> infinity} A136677(n)/A334605(n). - Petros Hadjicostas, May 07 2020

A275710 Decimal expansion of the Dirichlet eta function at 7.

Original entry on oeis.org

9, 9, 2, 5, 9, 3, 8, 1, 9, 9, 2, 2, 8, 3, 0, 2, 8, 2, 6, 7, 0, 4, 2, 5, 7, 1, 3, 1, 3, 3, 3, 9, 3, 6, 8, 5, 2, 3, 1, 1, 1, 5, 6, 9, 2, 4, 3, 1, 4, 0, 6, 8, 5, 1, 6, 2, 9, 5, 1, 3, 0, 8, 7, 5, 6, 2, 6, 7, 0, 2, 0, 5, 2, 1, 8, 6, 4, 7, 0, 5, 1, 9, 8, 1, 3, 1, 4, 2, 0, 3, 7, 7, 4, 5, 7, 2, 3, 9, 7, 0
Offset: 0

Views

Author

Terry D. Grant, Aug 06 2016

Keywords

Examples

			0.99259381992283028267...
		

Crossrefs

Cf. A002162 (value at 1), A013665, A072691 (value at 2), A197070 (value at 3), A267315 (value at 4), A267316 (value at 5), A275703 (value at 6), A334668, A334669, A347150, A347059.

Programs

  • Mathematica
    RealDigits[63 Zeta[7]/64, 10, 100] [[1]]
  • PARI
    -polylog(7, -1) \\ Michel Marcus, Aug 20 2021
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1, 10000): s -= (-1)^i / i^7
    print(s) # Terry D. Grant, Aug 06 2016
    

Formula

eta(7) = 63*zeta(7)/64 = (63*A013665)/64.
eta(7) = Lim_{n -> infinity} A334668(n)/A334669(n). - Petros Hadjicostas, May 07 2020
Equals Sum_{k>=1} (-1)^(k+1) / k^7. - Sean A. Irvine, Aug 19 2021

A218131 Number of length 8 primitive (=aperiodic or period 8) n-ary words.

Original entry on oeis.org

0, 0, 240, 6480, 65280, 390000, 1678320, 5762400, 16773120, 43040160, 99990000, 214344240, 429960960, 815702160, 1475750640, 2562840000, 4294901760, 6975673920, 11019855600, 16983432720, 25599840000, 37822664880, 54875639280, 78310705440, 110074982400
Offset: 0

Views

Author

Alois P. Heinz, Oct 21 2012

Keywords

Crossrefs

Row n=8 of A143324.

Programs

  • Maple
    a:= n-> (n^4-1)*n^4:
    seq(a(n), n=0..30);
  • Mathematica
    Table[n^8 - n^4, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 30 2017 *)

Formula

G.f.: -240*x^2*(x+1)*(x^4+17*x^3+48*x^2+17*x+1)/(x-1)^9.
a(n) = n^8-n^4.
From Amiram Eldar, Jan 12 2021: (Start)
Sum_{n>=2} 1/a(n) = 15/8 - Pi^4/90 - Pi*coth(Pi)/4.
Sum_{n>=2} (-1)^n/a(n) = -7/8 + 7*Pi^4/720 - Pi*csch(Pi)/4 = -7/8 + A267315 - (1/4) * A090986. (End)

A334585 Denominator of Sum_{k=1..n} (-1)^(k+1)/k^4.

Original entry on oeis.org

1, 16, 1296, 20736, 12960000, 4320000, 10372320000, 165957120000, 40327580160000, 8065516032000, 118087220224512000, 118087220224512000, 3372689096832287232000, 3372689096832287232000, 16863445484161436160000, 269815127746582978560000, 22535229284522356952309760000
Offset: 1

Views

Author

Petros Hadjicostas, May 06 2020

Keywords

Comments

Lim_{n -> infinity} A120296(n)/a(n) = A267315 = (7/8)*A013662.

Examples

			The first few fractions are 1, 15/16, 1231/1296, 19615/20736, 12280111/12960000, 4090037/4320000, 9824498837/10372320000, ... = A120296/A334585.
		

Crossrefs

Cf. A013662, A120296 (numerators), A267315.

Programs

  • Maple
    b := proc(n) local k: add((-1)^(k + 1)/k^4, k = 1 .. n): end proc:
    seq(denom(b(n)), n = 1 .. 17);
  • Mathematica
    Denominator @ Accumulate[Table[(-1)^(k + 1)/k^4, {k, 1, 17}]] (* Amiram Eldar, May 08 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, (-1)^(k+1)/k^4)); \\ Michel Marcus, May 07 2020

A347059 Decimal expansion of the Dirichlet eta function at 9.

Original entry on oeis.org

9, 9, 8, 0, 9, 4, 2, 9, 7, 5, 4, 1, 6, 0, 5, 3, 3, 0, 7, 6, 7, 7, 8, 3, 0, 3, 1, 8, 5, 2, 5, 9, 7, 9, 5, 0, 8, 7, 4, 3, 3, 3, 9, 5, 3, 5, 3, 7, 8, 7, 7, 4, 7, 2, 3, 4, 3, 3, 2, 8, 6, 6, 0, 3, 7, 8, 8, 8, 7, 4, 5, 5, 5, 2, 5, 4, 5, 2, 7, 0, 2, 0, 7, 9, 4, 9, 3
Offset: 0

Views

Author

Sean A. Irvine, Aug 14 2021

Keywords

Examples

			0.998094297541605330767783031852597950...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[DirichletEta[9],87]]] (* Stefano Spezia, Aug 15 2021 *)
  • PARI
    -polylog(9, -1) \\ Michel Marcus, Aug 15 2021

Formula

Equals (255/256) * zeta(9).
Equals Sum_{k>=1} (-1)^(k+1) / k^9.
Equals eta(9).

A347150 Decimal expansion of the Dirichlet eta function at 8.

Original entry on oeis.org

9, 9, 6, 2, 3, 3, 0, 0, 1, 8, 5, 2, 6, 4, 7, 8, 9, 9, 2, 2, 7, 2, 8, 9, 2, 6, 0, 0, 8, 2, 8, 0, 3, 6, 1, 7, 8, 7, 4, 1, 2, 5, 1, 5, 9, 4, 7, 2, 8, 9, 8, 0, 6, 7, 0, 4, 5, 2, 8, 9, 0, 2, 9, 1, 9, 4, 3, 5, 9, 6, 4, 8, 2, 5, 7, 7, 5, 8, 5, 8, 9, 2, 8, 2, 8, 2, 4
Offset: 0

Views

Author

Sean A. Irvine, Aug 19 2021

Keywords

Examples

			0.9962330018526478992272892600828036178741251594728980...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306).

Crossrefs

Programs

  • Mathematica
    RealDigits[DirichletEta[8], 10, 100][[1]] (* Amiram Eldar, Aug 20 2021 *)
  • PARI
    -polylog(8, -1) \\ Michel Marcus, Aug 20 2021

Formula

Equals (127/128) * zeta(8).
Equals 127 * Pi^8 / 1209600.
Equals Sum_{k>=1} (-1)^(k+1) / k^8.
Equals eta(8).
Showing 1-10 of 15 results. Next