cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A120296 Numerator of Sum_{k=1..n} (-1)^(k+1)/k^4.

Original entry on oeis.org

1, 15, 1231, 19615, 12280111, 4090037, 9824498837, 157151464517, 38193952437631, 7637983935923, 111835788321880643, 111830093529238643, 3194097388508809394723, 3194009594644356242723, 15970381078317764649391
Offset: 1

Views

Author

Alexander Adamchuk, Jul 10 2006

Keywords

Comments

p divides a(p-1) for prime p > 2 - similar to Wolstenholme's theorem for A007406(n) (= numerator of Sum_{k=1..n} 1/k^2) and for A007410(n) (= numerator of Sum_{k=1..n} 1/k^4).
Lim_{n -> infinity} a(n)/A334585(n) = A267315 = (7/8)*A013662. - Petros Hadjicostas, May 07 2020

Examples

			The first few fractions are 1, 15/16, 1231/1296, 19615/20736, 12280111/12960000, 4090037/4320000, 9824498837/10372320000, ... = A120296/A334585. - _Petros Hadjicostas_, May 06 2020
		

Crossrefs

Cf. A007406, A007410, A013662, A119682, A267315, A334585 (denominators).

Programs

  • Mathematica
    Numerator[Table[Sum[(-1)^(k+1)/k^4,{k,1,n}],{n,1,20}]]
  • PARI
    a(n) = numerator(sum(k=1, n, (-1)^(k+1)/k^4)); \\ Michel Marcus, May 07 2020

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/k^4).

Extensions

Name edited by Petros Hadjicostas, May 07 2020

A267315 Decimal expansion of the Dirichlet eta function at 4.

Original entry on oeis.org

9, 4, 7, 0, 3, 2, 8, 2, 9, 4, 9, 7, 2, 4, 5, 9, 1, 7, 5, 7, 6, 5, 0, 3, 2, 3, 4, 4, 7, 3, 5, 2, 1, 9, 1, 4, 9, 2, 7, 9, 0, 7, 0, 8, 2, 9, 2, 8, 8, 8, 6, 0, 4, 4, 2, 2, 2, 6, 0, 4, 1, 8, 8, 5, 1, 3, 6, 0, 5, 5, 3, 9, 1, 6, 3, 5, 9, 7, 7, 4, 0, 7, 3, 7, 2, 9, 5, 9, 3, 1, 4, 4, 8, 9, 8, 7, 4, 2, 7, 5, 7, 8, 8, 6, 6, 9, 6, 2, 1, 6, 9, 5, 3, 7, 3, 9, 9, 6, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Examples

			eta(4) = 1/1^4 - 1/2^4 + 1/3^4 - 1/4^4 + 1/5^4 - 1/6^4 + ... = 0.9470328294972459175765032344735219149279070829288860...
		

Crossrefs

Programs

  • Magma
    pi:= 7*Pi(RealField(110))^4 / 720; Reverse(Intseq(Floor(10^100*pi))); // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    RealDigits[(7 Pi^4)/720, 10, 120][[1]]
  • PARI
    7*Pi^4/720 \\ Michel Marcus, Feb 01 2016
    
  • Sage
    s = RLF(0); s
    RealField(110)(s)
    for i in range(1,10000): s += -((-1)^i/((i)^4))
    print(s) # Terry D. Grant, Aug 04 2016

Formula

eta(4) = Sum_{k > 0} (-1)^(k+1)/k^4 = (7*Pi^4)/720.
eta(4) = Lim_{n -> infinity} A120296(n)/A334585(n) = (7/8)*A013662. - Petros Hadjicostas, May 07 2020
Showing 1-2 of 2 results.