A267968 a(n) = Product_{k = 1..n} k^(k + 1).
1, 1, 8, 648, 663552, 10368000000, 2902376448000000, 16731622649806848000000, 2245680377810414777401344000000, 7830203310981140781182893575634944000000, 783020331098114078118289357563494400000000000000000, 2457453226667794121573260254679367673480373862400000000000000000
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..35
Programs
-
Magma
[&*[k^(k+1): k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Jan 23 2016
-
Maple
a:= proc(n) a(n):= `if`(n=0, 1, a(n-1)*n^(n+1)) end: seq(a(n), n=0..12); # Alois P. Heinz, Feb 10 2016
-
Mathematica
a[n_]:= Product[k^(k+1), {k,n}]; Table[a[n], {n, 0, 20}] Table[Hyperfactorial[n]*n!, {n, 0, 15}] (* Vaclav Kotesovec, Jan 26 2016 *)
-
PARI
a(n) = prod(k=1, n, k^(k+1)); \\ Michel Marcus, Jan 23 2016
-
SageMath
[product(k^(k+1) for k in range(1,n+1)) for n in range(21)] # G. C. Greubel, Feb 18 2024
Formula
a(n) = n! * A002109(n). - Vaclav Kotesovec, Jan 26 2016
a(n) = (n!)^2 * abs(A203421(n)). - Michel Marcus, Feb 11 2016