cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A071585 Numerator of the continued fraction expansion whose terms are the first-order differences of exponents in the binary representation of 4*n, with the exponents of 2 being listed in descending order.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14, 19, 18, 21, 8, 13, 16, 17, 17, 22, 19, 23, 16, 23, 24, 27, 19
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2002

Keywords

Comments

Thus a(n)/a(m) = d_1 + 1/(d_2 + 1/(d_3 + ... + 1/d_k)) where m = n - 2^floor(log_2(n)) + 1 and where d_j = b_j - b_(j+1) are the differences of the binary exponents b_j > b_(j+1) defined by: 4*n = 2^b_1 + 2^b_2 + 2^b_3 + ... 2^b_k.
All the rationals are uniquely represented by this sequence - compare Stern's diatomic sequence A002487.
This sequence lists the rationals >= 1 in order by the sum of the terms of their continued fraction expansions. For example, the numerators generated from partitions of 5 that do not end with 1 are listed together as 5, 7, 7, 8, 5, 7, 7, 8, since: 5/1 = [5]; 7/2 = [3;2]; 7/3 = [2;3]; 8/3 = [2;1,2]; 5/4 = [1;4]; 7/5 = [1;2,2]; 7/4 = [1;1,3]; 8/5 = [1;1,1,2].
From Yosu Yurramendi, Jun 23 2014: (Start)
If the terms (n>0) are written as an array:
1,
2,
3, 3,
4, 5, 4, 5,
5, 7, 7, 8, 5, 7, 7, 8,
6, 9,10,11, 9,12,11,13, 6, 9,10,11, 9,12,11,13,
7,11,13,14,13,17,15,18,11,16,17,19,14,19,18,21,7,11,13,14,13,17,15,18,11, ...
then the sum of the k-th row is 2*3^(k-2) for k>1, each column is an arithmetic progression. The differences of the arithmetic sequences give the sequence A071585 itself: a(2^(p+1)+k) - a(2^p+k) = a(k). A002487 and A007306 also have these properties. The first terms of columns, excluding a(0), give A086593.
If the rows (n>0) are written on right:
1;
2;
3, 3;
4, 5, 4, 5;
5, 7, 7, 8, 5, 7, 7, 8;
6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13;
then each column is a Fibonacci sequence: a(2^(p+2)+k) = a(2^(p+1)+k) + a(2^p+k). The first terms of columns, excluding a(0), give A086593. (End)
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A229742(n)/A071766(n) is also an enumeration system of all positive rationals (HCS system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) (A229742(n)+A071766(n)) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A086592 (A020650+A020651), and A268087 (A162909+A162910). - Yosu Yurramendi, Apr 06 2016
a(n) = A086592(A059893(n)), a(A059893(n)) = A086592(n), n > 0. - Yosu Yurramendi, May 30 2017

Examples

			a(37)=17 as it is the numerator of 17/5 = 3 + 1/(2 + 1/2), which is a continued fraction that can be derived from the binary expansion of 4*37 = 2^7 + 2^4 + 2^2; the binary exponents are {7, 4, 2}, thus the differences of these exponents are {3, 2, 2}; giving the continued fraction expansion of 17/5=[3,2,2].
Illustration of Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k:
k=2: 3^2 = a(2^2) + a(2^2 + 1) = 4 + 5;
k=3: 3^3 = a(2^3) + a(2^3 + 1) + a(2^3 + 2) + a(2^3 + 3) = 5 + 7 + 7 + 8;
k=4: 3^4 = a(2^4) + a(2^4+1) + a(2^4+2) + a(2^4+3) + a(2^4+4) + a(2^4+5) + a(2^4+6) + a(2^4+7) = 6 + 9 + 10 + 11 + 9 + 12 + 11 + 13.
1, 2, 3, 3/2, 4, 5/2, 4/3, 5/3, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, 6, ...
From _Yosu Yurramendi_, Jun 27 2014: (Start)
a(0) =             = 1;
a(1) = a(0) + a(0) = 2;
a(2) = a(0) + a(1) = 3;
a(3) = a(1) + a(0) = 3;
a(4) = a(0) + a(2) = 4;
a(5) = a(1) + a(3) = 5;
a(6) = a(2) + a(0) = 4;
a(7) = a(3) + a(1) = 5;
a(8) = a(0) + a(4) = 5;
a(9) = a(1) + a(5) = 7;
a(10) = a(2) + a(6) = 7;
a(11) = a(3) + a(7) = 8;
a(12) = a(4) + a(0) = 5;
a(13) = a(5) + a(1) = 7;
a(14) = a(6) + a(2) = 7;
a(15) = a(7) + a(3) = 8. (End)
		

Crossrefs

Cf. A071766.

Programs

  • Mathematica
    ncf[n_]:=Module[{br=Reverse[Flatten[Position[Reverse[IntegerDigits[4 n,2]],1]-1]]}, Numerator[FromContinuedFraction[Flatten[Join[{Abs[ Differences[ br]],Last[br]}]]]]]; Join[{1},Array[ncf,80]] (* Harvey P. Dale, Jul 01 2012 *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2[NumberExpand[4 n, 2] /. 0 -> Nothing], {n, 120}] (* Version 11, or *)
    {1}~Join~Table[Numerator@ FromContinuedFraction@ Append[Abs@ Differences@ #, Last@ #] &@ Log2@ DeleteCases[# Reverse[2^Range[0, Length@ # - 1]] &@ IntegerDigits[4 n, 2], k_ /; k == 0], {n, 120}] (* Michael De Vlieger, Aug 15 2016 *)
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(k in 1:blocklevel)
    a <- c(a, a + c(a[((length(a)/2)+1):length(a)],a[1:(length(a)/2)]))
    a
    # Yosu Yurramendi, Jun 26 2014
    
  • R
    blocklevel <- 7  # arbitrary
    a <- c(1,2)
    for(p in 0:blocklevel)
      for(k in 1:2^(p+1)){
        if (k <=  2^p) a[k + 2^(p+1)] = a[k] + a[k + 2^p]
        else           a[k + 2^(p+1)] = a[k] + a[k - 2^p]
    }
    a
    # Yosu Yurramendi, Jun 27 2014

Formula

a(2^k + 2^j + m) = (k-j)*a(2^j + m) + a(m) when 2^k > 2^j > m >= 0.
a(0) = 1, a(2^k) = k + 2,
a(2^k + 1) = 2*k + 1 (k>0),
a(2^k + 2) = 3*k - 2 (k>1),
a(2^k + 3) = 3*k - 1 (k>1),
a(2^k + 4) = 4*k - 7 (k>2).
a(2^k - 1) = Fibonacci(k+2) = A000045(k+2).
Sum_{m=0..2^(k-1)-1} a(2^k + m) = 3^k (k>0).
From Yosu Yurramendi, Jun 27 2014: (Start)
Write n = k + 2^(m+1), k = 0,1,2,...,2^(m+1)-1, m = 0,1,2,...
if 0 <= k < 2^m, a(k + 2^(m+1)) = a(k) + a(k + 2^m).
if 2^m <= k < 2^(m+1), a(k + 2^(m+1)) = a(k) + a(k - 2^m).
with a(0)=1, a(1)=2. (End)
a(n) = A059893(A086592(n)), n>0. - Yosu Yurramendi, Apr 09 2016
a(n) = A093873(n) + A093875(n), n > 0. - Yosu Yurramendi, Jul 22 2016
a(n) = A093873(2n) + A093873(2n+1), n > 0; a(n) = A093875(2n) = A093875(2n+1), n > 0. - Yosu Yurramendi, Jul 25 2016
a(n) = sqrt(A071766(2^(m+1)+n)*A229742(2^(m+1)+n) - A071766(2^m+n)*A229742(2^m+n)), for n > 0, where m = floor(log_2(n)+1). - Yosu Yurramendi, Jun 10 2019
a(n) = A007306(A059893(A233279(n))), n > 0. - Yosu Yurramendi, Aug 07 2021
a(n) = A007306(A059894(A006068(n))), n > 0. - Yosu Yurramendi, Sep 29 2021
Conjecture: a(n) = a(floor(n/2)) + Sum_{k=1..A000120(n)} a(b(n, k))*(-1)^(k-1) for n > 0 with a(0) = 1 where b(n, k) = A025480(b(n, k-1) - 1) for n > 0, k > 0 with b(n, 0) = n. - Mikhail Kurkov, Feb 20 2023

A162909 Numerators of Bird tree fractions.

Original entry on oeis.org

1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 5, 4, 4, 5, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 8, 7, 5, 7, 7, 5, 7, 8, 3, 3, 1, 2, 5, 4, 4, 5, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The Bird tree is an infinite binary tree labeled with rational numbers. The root is labeled with 1. The tree enjoys the following fractal property: it can be transformed into its left subtree by first incrementing and then reciprocalizing the elements; for the right subtree interchange the order of the two steps: the elements are first reciprocalized and then incremented. Like the Stern-Brocot tree, the Bird tree enumerates all the positive rationals (A162909(n)/A162910(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1,2,
2,1,3,3,
3,3,1,2,5,4,4,5,
5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
1, 2,
2,1, 3, 3,
3, 3,1,2, 5,4, 4, 5,
5, 4,4, 5,2,1, 3, 3, 8, 7,5,7, 7,5, 7, 8,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,
then each column k also is a Fibonacci sequence.
The Fibonacci sequences of both triangles are equal except the first terms of first triangle.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162910 ( a(2^m+k) = A162910(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
(End)

Examples

			The first four levels of the Bird tree: [1/1] [1/2, 2/1] [2/3, 1/3, 3/1, 3/2], [3/5, 3/4, 1/4, 2/5, 5/2, 4/1, 4/3, 5/3].
		

Crossrefs

This sequence is the composition of A162911 and A059893: a(n) = A162911(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio
    bird :: [Rational]
    bird = branch (recip . succ) (succ . recip) 1
    branch f g a = a : branch f g (f a) \/ branch f g (g a)
    (a : as) \/ bs = a : (bs \/ as)
    a162909 = map numerator bird
    a162910 = map denominator bird
    
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 1:blocklevel) for(k in 0:(2^(m-1)-1)){
    a[2^m+k]         = a[2^m-k-1]
    a[2^m+2^(m-1)+k] = a[2^m+k] + a[2^(m-1)+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

a(2^m+k) = a(2^m-k-1), a(2^m+2^(m-1)+k) = a(2^m+k) + a(2^(m-1)+k), a(1) = 1, m=0,1,2,3,..., k=0,1,...,2^(m-1)-1. - Yosu Yurramendi, Jul 11 2014
a(A097072(n)*2^m+k) = A268087(2^m+k), m >= 0, 0 <= k < 2^m, n > 1. a(A000975(n)) = 1, n > 0. - Yosu Yurramendi, Feb 21 2017
a(n) = A002487(A258996(A059893(n))) = A002487(A059893(A258746(n))), n > 0. - Yosu Yurramendi, Jul 14 2021

A162910 Denominators of Bird tree fractions.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 2, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 3, 3, 1, 2, 5, 4, 4, 5, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 21, 18, 14, 19, 16, 11, 17, 19, 14, 13, 7, 11, 17, 13, 15, 18, 18, 15, 13, 17, 11, 7, 13, 14, 19
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The Bird tree is an infinite binary tree labeled with rational numbers. The root is labeled with 1. The tree enjoys the following fractal property: it can be transformed into its left subtree by first incrementing and then reciprocalizing the elements; for the right subtree interchange the order of the two steps: the elements are first reciprocalized and then incremented. Like the Stern-Brocot tree, the Bird tree enumerates all the positive rationals (A162909(n)/A162910(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
2, 1,
3, 3,1, 2,
5, 4,4, 5,2,1, 3, 3,
8, 7,5, 7,7,5, 7, 8, 3, 3,1,2, 5,4, 4, 5,
13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci sequence.
If the rows are written in a right-aligned fashion:
1,
2,1,
3,3,1,2,
5,4,4,5,2,1,3,3,
8,7,5,7,7,5,7,8,3,3,1,2,5,4,4,5,
13,11,9,12,9,6,10,11,11,10,6,9,12,9,11,13,5,4,4,5,2,1,3,3,8,7,5,7,7,5,7,8,
then each column k also is a Fibonacci sequence.
The Fibonacci sequences of both triangles are equal except the first terms of second triangle.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162909 ( a(2^m+k) = A162909(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
(End)

Examples

			The first four levels of the Bird tree: [1/1] [1/2, 2/1] [2/3, 1/3, 3/1, 3/2], [3/5, 3/4, 1/4, 2/5, 5/2, 4/1, 4/3, 5/3].
		

Crossrefs

This sequence is the composition of A162912 and A059893: a(n) = A162912(A059893(n)). This sequence is a permutation of A002487(n+2).

Programs

  • Haskell
    import Ratio; bird :: [Rational]; bird = branch (recip . succ) (succ . recip) 1; branch f g a = a : branch f g (f a) \/ branch f g (g a); (a : as) \/ bs = a : (bs \/ as); a162909 = map numerator bird; a162910 = map denominator bird
    
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 1:blocklevel) for(k in 0:(2^(m-1)-1)){
    a[2^m+k]         = a[2^m-k-1] + a[2^(m-1)+k]
    a[2^m+2^(m-1)+k] = a[2^m-k-1]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

a(2^m+k) = a(2^m-k-1) + a(2^(m-1)+k), a(2^m+2^(m-1)+k) = a(2^m-k-1), a(1) = 1, m=0,1,2,3,..., k=0,1,...,2^(m-1)-1. - Yosu Yurramendi, Jul 11 2014
If k is odd a(A080675(n)*2^m+k) = A268087(2^m+k), if k is even a(A136412(2^m+k+1)*2^m+k) = A268087(2^m+k), m >= 0, 0 <= k < 2^m, n > 0. a(A081254(n)) = 1, n > 0. - Yosu Yurramendi, Feb 21 2017
a(n) = A002487(1+A258996(A059893(n))) = A002487(1+A059893(A258746(n))), n > 0. - Yosu Yurramendi, Jul 14 2021

A162911 Numerators of drib tree fractions, where drib is the bit-reversal permutation tree of the Bird tree.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 3, 3, 5, 1, 4, 3, 4, 2, 5, 5, 8, 2, 7, 4, 5, 3, 7, 4, 7, 1, 5, 5, 7, 3, 8, 8, 13, 3, 11, 7, 9, 5, 12, 5, 9, 1, 6, 7, 10, 4, 11, 7, 11, 3, 10, 5, 6, 4, 9, 7, 12, 2, 9, 8, 11, 5, 13, 13, 21, 5, 18, 11, 14, 8, 19, 9, 16, 2, 11, 12, 17, 7, 19, 9, 14, 4, 13, 6, 7, 5, 11, 10, 17, 3, 13
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The drib tree is an infinite binary tree labeled with rational numbers. It is generated by the following iterative process: start with the rational 1; for the left subtree increment and then reciprocalize the current rational; for the right subtree interchange the order of the two steps: the rational is first reciprocalized and then incremented. Like the Stern-Brocot and the Bird tree, the drib tree enumerates all the positive rationals (A162911(n)/A162912(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1, 2,
2, 3,1, 3,
3, 5,1, 4, 3, 4,2, 5,
5, 8,2, 7, 4, 5,3, 7,4, 7,1, 5, 5, 7,3, 8,
...
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci-type sequence.
If the rows are written in a right-aligned fashion:
1
1, 2
2, 3,1, 3
3, 5,1, 4, 3, 4,2, 5
5, 8,2, 7,4, 5,3, 7, 4, 7,1, 5, 5, 7,3, 8
...
then each column k also is a Fibonacci-type sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162912 (a(2^m+k) = A162912(2^(m+1)-1-k), m = 0,1,2,..., k = 0..2^m-1).
(End)
From Yosu Yurramendi, Jan 12 2017: (Start)
a(2^(m+2m' ) + A020988(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) + A020989(m')) = A000045(m+3), m>=0, m'>=0
a(2^(m+2m' ) - 1 - A002450(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) - 1 - A072197(m'-1)) = A000045(m+3), m>=0, m'>0
a(2^(m+1) -1) = A000045(m+2), m>=0. (End)

Examples

			The first four levels of the drib tree:
  [1/1],
  [1/2, 2/1],
  [2/3, 3/1, 1/3, 3/2],
  [3/5, 5/2, 1/4, 4/3, 3/4, 4/1, 2/5, 5/3].
		

Crossrefs

This sequence is the composition of A162909 and A059893: a(n) = A162909(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio; drib :: [Rational]; drib = 1 : map (recip . succ) drib \/ map (succ . recip) drib; (a : as) \/ bs = a : (bs \/ as); a162911 = map numerator drib; a162912 = map denominator drib
    
  • PARI
    a(n) = my(x = 0, y = 1); forstep(i = logint(n, 2), 0, -1, [x, y] = if(bittest(n, i), [y, x + y], [x + y, x])); y \\ Mikhail Kurkov, Oct 12 2023
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k  ] <- a[2^(m+1)-1-k]
      a[2^(m+1)+2*k+1] <- a[2^(m+1)-1-k] + a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014
    

Formula

a(n) where a(1) = 1; a(2n) = b(n); a(2n+1) = a(n) + b(n); and b(1) = 1; b(2n) = a(n) + b(n); b(2n+1) = a(n).
a(2^(m+1)+2*k) = a(2^(m+1)-k-1), a(2^(m+1)+2*k+1) = a(2^(m+1)-k-1) + a(2^m+k), a(1) = 1, m>=0, k=0..2^m-1. - Yosu Yurramendi, Jul 11 2014
a(2^(m+1) + 2*k) = A162912(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^(m+1) + 2*k + 1) = a(2^m + k) + A162912(2^m + k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 30 2016
a(n*2^m + A176965(m)) = A268087(n), n > 0, m > 0. - Yosu Yurramendi, Feb 20 2017
a(n) = A002487(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A162912 Denominators of drib tree fractions, where drib is the bit-reversal permutation tree of the Bird tree.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 2, 5, 2, 4, 3, 4, 1, 5, 3, 8, 3, 7, 5, 5, 1, 7, 4, 7, 3, 5, 4, 7, 2, 8, 5, 13, 5, 11, 8, 9, 2, 12, 7, 9, 4, 6, 5, 10, 3, 11, 7, 11, 4, 10, 7, 6, 1, 9, 5, 12, 5, 9, 7, 11, 3, 13, 8, 21, 8, 18, 13, 14, 3, 19, 11, 16, 7, 11, 9, 17, 5, 19, 12, 14, 5, 13, 9, 7, 1, 11, 6, 17, 7, 13, 10, 15
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The drib tree is an infinite binary tree labeled with rational numbers. It is generated by the following iterative process: start with the rational 1; for the left subtree increment and then take the reciprocal of the current rational; for the right subtree interchange the order of the two steps: take the reciprocal and then increment. Like the Stern-Brocot and the Bird tree, the drib tree enumerates the positive rationals: A162911(n)/A162912(n).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
2, 1,
3, 1, 3,2,
5, 2, 4,3,4,1, 5,3,
8, 3, 7,5,5,1, 7,4,7,3,5,4, 7,2, 8,5,
13,5,11,8,9,2,12,7,9,4,6,5,10,3,11,7,11,4,10,7,6,1,9,5,12,5,9,7,11,3,13,8,
then the sum of the m-th row is 3^m (m = 0,1,2,), and each column k is a Fibonacci sequence (a(2^(m+2)+k) = a(2^(m+1)+k) + a(2^m+k), m = 0,1,2,..., k = 0,1,2,...,2^m-1).
If the rows are written in a right-aligned fashion:
1,
2,1,
3,1, 3,2,
5,2,4,3, 4,1, 5,3,
8,3, 7,5,5,1,7,4, 7,3,5,4, 7,2, 8,5,
13,5,11,8,9,2,12,7,9,4,6,5,10,3,11,7,11,4,10,7,6,1,9,5,12,5,9,7,11,3,13,8,
then each column k also is a Fibonacci sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162911 ( a(2^m+k) = A162911(2^(m+1)-1-k), m = 0,1,2,..., k = 0,1,2,...,2^m-1). (End)

Examples

			The first four levels of the drib tree:
  [1/1],
  [1/2, 2/1],
  [2/3, 3/1, 1/3, 3/2],
  [3/5, 5/2, 1/4, 4/3, 3/4, 4/1, 2/5, 5/3].
		

Crossrefs

This sequence is the composition of A162910 and A059893: a(n) = A162910(A059893(n)). This sequence is a permutation of A002487(n+2).
Cf. A096773.

Programs

  • Haskell
    import Ratio; drib :: [Rational]; drib = 1 : map (recip . succ) drib \/ map (succ . recip) drib; (a : as) \/ bs = a : (bs \/ as); a162911 = map numerator drib; a162912 = map denominator drib
    
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k]   <- a[2^(m+1)-1-k] + a[2^m+k]
      a[2^(m+1)+2*k+1] <- a[2^(m+1)-1-k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014

Formula

b(n) where a(1) = 1; a(2n) = b(n); a(2n+1) = a(n) + b(n); and b(1) = 1; b(2n) = a(n) + b(n); b(2n+1) = a(n).
a(2^(m+1)+2*k) = a(2^m+k) + a(2^(m+1)-1-k) , a(2^(m+1)+2*k+1) = a(2^(m+1)-1-k) , a(1) = 1 , m=0,1,2,3,... , k=0,1,...,2^m-1. - Yosu Yurramendi, Jul 11 2014
a(2^(m+1) + 2*k + 1) = A162911(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^(m+1) + 2*k) = A162911(2^m + k) + a(2^m + k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 30 2016
a(n*2^(m+1) + A096773(m)) = A268087(n), n > 0, m >= 0. - Yosu Yurramendi, Feb 20 2017
a(n) = A002487(1+A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

Extensions

Edited by Charles R Greathouse IV, May 13 2010

A086592 Denominators in left-hand half of Kepler's tree of fractions.

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 8, 8, 6, 6, 9, 9, 10, 10, 11, 11, 9, 9, 12, 12, 11, 11, 13, 13, 7, 7, 11, 11, 13, 13, 14, 14, 13, 13, 17, 17, 15, 15, 18, 18, 11, 11, 16, 16, 17, 17, 19, 19, 14, 14, 19, 19, 18, 18, 21, 21, 8, 8, 13, 13, 16, 16, 17, 17, 17, 17, 22, 22, 19, 19, 23
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2003

Keywords

Comments

Form a tree of fractions by beginning with 1/1 and then giving every node i/j two descendants labeled i/(i+j) and j/(i+j).
Level n of the left-hand half of the tree consists of 2^(n-1) nodes: 1/2; 1/3, 2/3; 1/4, 3/4, 2/5, 3/5; 1/5, 4/5, 3/7, 4/7, 2/7, 5/7, 3/8, 5/8; ... .
The right-hand half is identical to the left-hand half. - Michel Dekking, Oct 05 2017
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters' comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A020650(n)/A020651(n) is also an enumeration system of all positive rationals (Yu-Ting system), and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306. The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), and A268087 (A162909+A162910). - Yosu Yurramendi, Apr 06 2016

References

  • Johannes Kepler, Mysterium cosmographicum, Tuebingen, 1596, 1621, Caput XII.
  • Johannes Kepler, Harmonice Mundi, Linz, 1619, Liber III, Caput II.
  • Johannes Kepler, The Harmony of the World [1619], trans. E. J. Aiton, A. M. Duncan and J. V. Field, American Philosophical Society, Philadelphia, 1997, p. 163.

Crossrefs

Bisection of A020650.
See A093873/A093875 for the full tree.
A020651 gives the numerators. Bisection: A086593. Cf. A002487, A004169.

Programs

  • Mathematica
    (* b = A020650 *) b[1] = 1; b[2] = 2; b[3] = 1; b[n_] := b[n] = Switch[ Mod[n, 4], 0, b[n/2 + 1] + b[n/2], 1, b[(n - 1)/2 + 1], 2, b[(n - 2)/2 + 1] + b[(n - 2)/2], 3, b[(n - 3)/2]]; a[n_] := b[2n]; Array[a, 100] (* Jean-François Alcover, Jan 22 2016 *)
  • R
    maxlevel <- 15
    d <- c(1,2)
    for(m in 0:maxlevel)
    for(k in 1:2^m) {
       d[2^(m+1)    +k] <- d[k] + d[2^m+k]
       d[2^(m+1)+2^m+k] <- d[2^(m+1)+k]
    }
    b <- vector()
    for(m in 0:maxlevel) for(k in 0:(2^m-1)) b[2^m+k] <- d[2^(m+1)+k]
    a <- vector()
    for(n in 1:2^maxlevel) {a[2*n-1] <- b[n]; a[2*n] <- b[n+1]}
    a[1:128]
    # Yosu Yurramendi, May 16 2018

Formula

a(n) = A020650(n) + A020651(n) = A020650(2n).
a(n) = A071585(A059893(n)), a(A059893(n)) = A071585(n), n > 0. - Yosu Yurramendi, May 30 2017
a(2*n-1) = A086593(n); a(2*n) = A086593(n+1), n > 0. - Yosu Yurramendi, May 16 2018
a(n) = A007306(A231551(n)), n > 0. - Yosu Yurramendi, Aug 07 2021

Extensions

Entry revised by N. J. A. Sloane, May 24 2004

A273493 a(n) = A245327(n) + A245328(n).

Original entry on oeis.org

2, 3, 3, 5, 5, 4, 4, 8, 8, 7, 7, 7, 7, 5, 5, 13, 13, 11, 11, 12, 12, 9, 9, 11, 11, 10, 10, 9, 9, 6, 6, 21, 21, 18, 18, 19, 19, 14, 14, 19, 19, 17, 17, 16, 16, 11, 11, 18, 18, 15, 15, 17, 17, 13, 13, 14, 14, 13, 13, 11, 11, 7, 7, 34, 34, 29, 29, 31, 31, 23, 23, 30, 30, 27, 27, 25, 25, 17, 17, 31, 31, 26, 26, 29, 29, 22, 22, 25
Offset: 1

Views

Author

Yosu Yurramendi, May 23 2016

Keywords

Comments

The terms (n>0) may be written as a left-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 5, 4, 4,
8, 8, 7, 7, 7, 7, 5, 5,
13,13,11,11,12,12, 9, 9,11,11,10,10, 9, 9, 6, 6,
21,21,18,18,19,19,14,14,19,19,17,17,16,16,11,11,18,18,15,15,17,17,13,13,14,14,...
All columns have the Fibonacci sequence property: a(2^(m+2) + k) = a(2^(m+1) + k) + a(2^m + k), m >= 0, 0 <= k < 2^m (empirical observations).
The terms (n>0) may also be written as a right-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 5, 4, 4,
8, 8, 7, 7, 7, 7, 5, 5,
13,13,11,11,12,12, 9, 9,11,11,10,10, 9, 9, 6, 6,
...,19,19,17,17,16,16,11,11,18,18,15,15,17,17,13,13,14,14,13,13,11,11, 7, 7,
Each column is an arithmetic sequence. The differences of the arithmetic sequences repeat the sequence A071585: a(2^(m+2) -1 - 2k) - a(2^(m+1) -1 - 2k) = A071585(k-1), m > 0, 0 <= k < 2^m ; a(2^(m+2) -1 - 2k - 1) - a(2^(m+1) -1 - 2k - 1) = A071585(k-1), m > 0, 0 <= k < 2^m .
n>1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters' comment), that is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A245327(n)/A245328(n) is also an enumeration system of all positive rationals, and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306.
a(n) = A273494(A059893(n)), a(A059893(n)) = A273494(n), n > 0. - Yosu Yurramendi, May 30 2017

Crossrefs

Programs

  • PARI
    b(n) = my(b=binary(n)); fromdigits(concat(b[1], Vecrev(vector(#b-1, k, b[k+1]))), 2); \\ from A059893
    a(n) = my(n=b(n), x=1, y=1); for(i=0, logint(n, 2), if(bittest(n, i), [x, y]=[x+y, y], [x, y]=[y, x+y])); x \\ Mikhail Kurkov, Mar 11 2023

Formula

a(n) = A007306(A284459(n)), n > 0. - Yosu Yurramendi, Aug 23 2021

A273494 a(n) = A245325(n) + A245326(n).

Original entry on oeis.org

2, 3, 3, 5, 4, 5, 4, 8, 7, 7, 5, 8, 7, 7, 5, 13, 11, 12, 9, 11, 10, 9, 6, 13, 11, 12, 9, 11, 10, 9, 6, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 21, 18, 19, 14, 19, 17, 16, 11, 18, 15, 17, 13, 14, 13, 11, 7, 34, 29, 31, 23, 30, 27, 25, 17, 31, 26, 29, 22, 25, 23, 20, 13, 29, 25, 26, 19, 27, 24, 23, 16, 23
Offset: 1

Views

Author

Yosu Yurramendi, May 23 2016

Keywords

Comments

The terms (n>0) may be written as a left-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 5, 4,
8, 7, 7, 5, 8, 7, 7, 5,
13,11,12, 9,11,10, 9, 6,13,11,12, 9,11,10, 9, 6,
21,18,19,14,19,17,16,11,18,15,17,13,14,13,11, 7,21,18,19,14,19,17,...
All columns have the Fibonacci sequence property: a(2^(m+2) + k) = a(2^(m+1) + k) + a(2^m + k), m >= 0, 0 <= k < 2^m (empirical observations).
The terms (n>0) may also be written as a right-justified array with rows of length 2^m, m >= 0:
2,
3, 3,
5, 4, 5, 4,
8, 7, 7, 5, 8, 7, 7, 5,
13,11,12, 9,11,10, 9, 6,13,11,12, 9,11,10, 9, 6,
..., 18,15,17,13,14,13,11, 7,21,18,19,14,19,17,16,11,18,15,17,13,14,13,11, 7,
Each column is an arithmetic sequence. The differences of the arithmetic sequences give the sequence A071585: a(2^(m+1)-1-k) - a(2^m-1-k) = A071585(k), m >= 0, 0 <= k < 2^m.
n > 1 occurs in this sequence phi(n) = A000010(n) times, as it occurs in A007306 (Franklin T. Adams-Watters's comment), which is the sequence obtained by adding numerator and denominator in the Calkin-Wilf enumeration system of positive rationals. A245325(n)/A245326(n) is also an enumeration system of all positive rationals, and in each level m >= 0 (ranks between 2^m and 2^(m+1)-1) rationals are the same in both systems. Thus a(n) has the same terms in each level as A007306.
The same property occurs in all numerator+denominator sequences of enumeration systems of positive rationals, as, for example, A007306 (A007305+A047679), A071585 (A229742+A071766), A086592 (A020650+A020651), A268087 (A162909+A162910).

Crossrefs

Programs

  • PARI
    a(n) = my(x=1, y=1); for(i=0, logint(n, 2), if(bittest(n, i), [x, y]=[x+y, y], [x, y]=[y, x+y])); x \\ Mikhail Kurkov, Mar 10 2023

Formula

a(n) = A273493(A059893(n)), a(A059893(n)) = A273493(n), n > 0. - Yosu Yurramendi, May 30 2017
a(n) = A007306(A059893(A180200(n))) = A007306(A059894(A154435(n))). - Yosu Yurramendi, Sep 20 2021
Showing 1-8 of 8 results.