A229742 a(n) = A071585(n) - A071766(n).
0, 1, 2, 1, 3, 3, 1, 2, 4, 5, 4, 5, 1, 2, 3, 3, 5, 7, 7, 8, 5, 7, 7, 8, 1, 2, 3, 3, 4, 5, 4, 5, 6, 9, 10, 11, 9, 12, 11, 13, 6, 9, 10, 11, 9, 12, 11, 13, 1, 2, 3, 3, 4, 5, 4, 5, 5, 7, 7, 8, 5, 7, 7, 8, 7, 11, 13, 14, 13, 17, 15, 18, 11, 16, 17, 19, 14
Offset: 0
Examples
A229742/A071766 = 0, 1, 2, 1/2, 3, 3/2, 1/3, 2/3, 4, 5/2, 4/3, 5/3, 1/4, 2/5, 3/4, 3/5, 5, 7/2, 7/3, 8/3, 5/4, 7/5, 7/4, 8/5, ... (this is the HCS form of the Stern-Brocot tree).
Programs
-
R
blocklevel <- 6 # arbitrary a <- 1 for(m in 0:blocklevel) for(k in 0:(2^(m-1)-1)){ a[2^(m+1)+k] <- a[2^m+k] + a[2^m+2^(m-1)+k] a[2^(m+1)+2^(m-1)+k] <- a[2^(m+1)+k] a[2^(m+1)+2^m+k] <- a[2^m+2^(m-1)+k] a[2^(m+1)+2^m+2^(m-1)+k] <- a[2^m+k] } a # Yosu Yurramendi, Jul 11 2014
Formula
From Yosu Yurramendi, May 26 2019: (Start)
a(2^(m+1)+2^m+k) = A071585( k)
a(2^(m+1) +k) = A071585(2^m+k), m >= 0, 0 <= k < 2^m. (End)
Comments