cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268291 a(n) = Sum_{k = 0..n} (k mod 13).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 78, 79, 81, 84, 88, 93, 99, 106, 114, 123, 133, 144, 156, 156, 157, 159, 162, 166, 171, 177, 184, 192, 201, 211, 222, 234, 234, 235, 237, 240, 244, 249, 255, 262, 270, 279, 289, 300, 312, 312, 313, 315, 318, 322, 327, 333, 340, 348
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2016

Keywords

Comments

More generally, the ordinary generating function for the Sum_{k = 0..n} (k mod m) is (Sum_{k = 1..(m - 1)} k*x^k)/((1 - x^m)*(1 - x)).
Sum_{k = 0..n} (k mod m) = m*(m - 1)/2 + Sum_{k = 1..(m - 1)} k*floor((n - k)/m), m>0.

Examples

			(see Extended example in Links section)
a(0)  = 0;
a(1)  = 0+1 = 1;
a(2)  = 0+1+2 = 3;
a(3)  = 0+1+2+3 = 6;
a(4)  = 0+1+2+3+4 = 10;
a(5)  = 0+1+2+3+4+5 = 15;
...
a(11) = 0+1+2+3+4+5+6+7+8+9+10+11 = 66;
a(12) = 0+1+2+3+4+5+6+7+8+9+10+11+12 = 78;
a(13) = 0+1+2+3+4+5+6+7+8+9+10+11+12+0 = 78;
a(14) = 0+1+2+3+4+5+6+7+8+9+10+11+12+0+1 = 79;
a(15) = 0+1+2+3+4+5+6+7+8+9+10+11+12+0+1+2 = 81, etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[k, 13], {k, 0, n}], {n, 0, 60}]
    Table[Sum[k - 13 Floor[k/13], {k, 0, n}], {n, 0, 60}]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 78}, 61]
    CoefficientList[Series[(x + 2 x^2 + 3 x^3 + 4 x^4 + 5 x^5 + 6 x^6 + 7 x^7 + 8 x^8 + 9 x^9 + 10 x^10 + 11 x^11 + 12 x^12) / ((1 - x^13) (1 - x)), {x, 0, 70}], x] (* Vincenzo Librandi, Jan 31 2016 *)
    Accumulate[Mod[Range[0,60],13]] (* Harvey P. Dale, May 10 2021 *)
  • PARI
    a(n) = sum(k = 0, n, k % 13); \\ Michel Marcus, Jan 31 2016

Formula

G.f.: (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + 10*x^10 + 11*x^11 + 12*x^12)/((1 - x^13)*(1 - x)).
a(n) = 12*floor((n - 12)/13) + 11*floor((n - 11)/13) + 10*floor((n - 10)/13) + 9*floor((n - 9)/13) + 8*floor((n - 8)/13) + 7*floor((n - 7)/13) + 6*floor((n - 6)/13) + 5*floor((n - 5)/13) + 4*floor((n - 4)/13) + 3*floor((n - 3)/13) + 2*floor((n - 2)/13) + floor((n - 1)/13) + 78.
a(n) = 6*n + r*(r-11)/2 where r = (n mod 13). - Hoang Xuan Thanh, Jun 02 2025