A268478 L(p) modulo p^2, where p = prime(n) and L is a Lucas number (A000032).
3, 4, 11, 29, 78, 14, 103, 324, 70, 204, 497, 519, 1477, 1420, 1881, 902, 1476, 3600, 3418, 2202, 5257, 317, 914, 5074, 4269, 9192, 5666, 6421, 7086, 4182, 12193, 3800, 1097, 11677, 299, 22651, 17271, 12063, 18371, 26297, 13784, 10137, 8405, 33583, 11230
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
- V. Andrejic, On Fibonacci powers, Publikacije Elektrotehnickog fakulteta - serija: matematika, 17 (2006), 38-44.
Programs
-
Magma
[Lucas(p) mod p^2: p in PrimesUpTo(250)]; // Bruno Berselli, Feb 09 2016
-
Mathematica
Table[Mod[LucasL[Prime[n]], Prime[n]^2], {n, 60}] (* Vincenzo Librandi, Feb 09 2016 *)
-
PARI
a000032(n) = fibonacci(n+1) + fibonacci(n-1) a(n) = my(p=prime(n)); lift(Mod(a000032(p), p^2))
Comments