cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A268478 L(p) modulo p^2, where p = prime(n) and L is a Lucas number (A000032).

Original entry on oeis.org

3, 4, 11, 29, 78, 14, 103, 324, 70, 204, 497, 519, 1477, 1420, 1881, 902, 1476, 3600, 3418, 2202, 5257, 317, 914, 5074, 4269, 9192, 5666, 6421, 7086, 4182, 12193, 3800, 1097, 11677, 299, 22651, 17271, 12063, 18371, 26297, 13784, 10137, 8405, 33583, 11230
Offset: 1

Views

Author

Felix Fröhlich, Feb 05 2016

Keywords

Comments

Lemma 7 from the Andrejic paper (p. 42): Prime p is a Wall-Sun-Sun prime iff L(p) == 1 (mod p^2). Therefore, a(n) = 1 iff A113650(n) = 0.

Crossrefs

Programs

  • Magma
    [Lucas(p) mod p^2: p in PrimesUpTo(250)]; // Bruno Berselli, Feb 09 2016
  • Mathematica
    Table[Mod[LucasL[Prime[n]], Prime[n]^2], {n, 60}] (* Vincenzo Librandi, Feb 09 2016 *)
  • PARI
    a000032(n) = fibonacci(n+1) + fibonacci(n-1)
    a(n) = my(p=prime(n)); lift(Mod(a000032(p), p^2))
    

Formula

a(n) = A180363(n) mod A001248(n). - Michel Marcus, Feb 09 2016