A268539 Numbers k such that 48*k + 25 is a perfect square.
0, 2, 3, 7, 17, 25, 28, 38, 58, 72, 77, 93, 123, 143, 150, 172, 212, 238, 247, 275, 325, 357, 368, 402, 462, 500, 513, 553, 623, 667, 682, 728, 808, 858, 875, 927, 1017, 1073, 1092, 1150, 1250, 1312, 1333, 1397, 1507, 1575, 1598, 1668, 1788, 1862, 1887, 1963, 2093, 2173
Offset: 1
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- J. Mc Laughlin, A. V. Sills and P. Zimmer, Rogers-Ramanujan-Slater Type Identities, Electronic J. Combinatorics, DS15, 1-59, May 31, 2008.
- Mircea Merca, The bisectional pentagonal number theorem, Journal of Number Theory, Volume 157, December 2015, Pages 223-232, see Corollary 4.4.
- Index entries for linear recurrences with constant coefficients, signature (3,-5,7,-7,5,-3,1).
Programs
-
Magma
[n: n in [0..2200] | IsSquare(48*n+25)]; // Vincenzo Librandi, Feb 25 2016
-
Maple
L := [5, 11, 13, 19, 29, 35, 37, 43]: seq(seq(((L[i]+48*j)^2-25)/48, i=1..8), j=0..10); # Robert Israel, Feb 29 2016
-
Mathematica
Select[Range[0, 2500], IntegerQ[Sqrt[48 # + 25]] &] (* Vincenzo Librandi, Feb 25 2016 *) Table[(3 (n - 1) n + (2 n - 1) (-1)^((n - 2) (n - 1)/2) - 1)/4, {n, 1, 60}] (* Bruno Berselli, Feb 29 2016 *) LinearRecurrence[{3, -5, 7, -7, 5, -3, 1}, {0, 2, 3, 7, 17, 25, 28}, 48] (* Robert G. Wilson v, Mar 05 2016 *) CoefficientList[ Series[ x*(2 - 3x + 8x^2 - 3x^3 + 2x^4)/((1 - x)^3*(1 + x^2)^2), {x, 0, 47}], x] (* Robert G. Wilson v, Mar 05 2016 *)
-
PARI
isok(n) = issquare(48*n+25); \\ Michel Marcus, Feb 25 2016
-
PARI
A268539(n)={my(m=n\4*12+[-3,2,5,6][n%4+1]);(3+m)*(m-2)/12} \\ M. F. Hasler, Mar 03 2016
-
Python
from gmpy2 import is_square [k for k in range(2200) if is_square(48*k+25)] # Bruno Berselli, Dec 05 2016
-
Sage
[n for n in (0..2200) if is_square(48*n+25)] # Bruno Berselli, Feb 29 2016
Formula
For n>25, a(n) = 3*( a(n-8)-a(n-16) ) + a(n-24). - Zak Seidov, Feb 28 2016
From Robert Israel, Feb 29 2016: (Start)
Let L = [5, 11, 13, 19, 29, 35, 37, 43].
Then a(i + 8*j) = ( (L(i) + 48*j)^2 - 25 )/48 for i = 1..8, j >= 0. (End)
From Bruno Berselli, Feb 29 2016: (Start)
G.f.: x^2*(2 - 3*x + 8*x^2 - 3*x^3 + 2*x^4)/((1 - x)^3*(1 + x^2)^2).
a(n) = a(-n+1) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>6.
a(n) = (3*(n-1)*n + (2*n-1)*(-1)^((n-2)*(n-1)/2) - 1)/4. Therefore:
a(4*k) = k*(12*k -5),
a(4*k+1) = k*(12*k +5),
a(4*k+2) = k*(12*k+11)+2 = (3*k+2)*(4*k+1),
a(4*k+3) = k*(12*k+13)+3 = (3*k+1)*(4*k+3).
From the previous formulas follows that 2, 3, 7 and 17 are the only primes of the sequence. (End)
Sum_{n>=2} 1/a(n) = 12/25 + (4/sqrt(3)-1)*Pi/5. - Amiram Eldar, Jul 30 2024
Extensions
More terms from Michel Marcus, Feb 25 2016
Comments