A269259 Primes p such that p+2^4, p+2^6, p+2^8, p+2^10 and p+2^12 are all primes.
37, 163, 15667, 22093, 40177, 47287, 53593, 114577, 120607, 142543, 234067, 242377, 255907, 263047, 263803, 305407, 388117, 444607, 460387, 503287, 527143, 607093, 671353, 784897, 904663, 938947, 1063903, 1086493, 1172803, 1216807, 1233523, 1288543
Offset: 1
Keywords
Examples
The prime 37 is in the sequence, since 37 + 16 = 53, 37 + 64 = 101, 37 + 256 = 293, 37 + 1024 = 1061 and 37 + 4096 = 4133 are all primes. The prime 163 is in the sequence, since 163 + 16 = 179, 163 + 64 = 227, 163 + 256 = 419, 163 + 1024 = 1187 and 163 + 4096 = 4259 are all primes.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10476
Programs
-
Magma
[p: p in PrimesInInterval(2,1600000) | forall{i: i in [16,64,256,1024,4096] | IsPrime(p+i)}]; // Vincenzo Librandi, Jul 16 2016
-
Mathematica
m = {2^4, 2^6, 2^8, 2^10, 2^12}; Select[Prime@ Range[2*10^5], Times @@ Boole@ PrimeQ[# + m] == 1 &] (* Michael De Vlieger, Jul 13 2016 *)
-
PARI
is(n) = for(k=2, 6, if(!ispseudoprime(2^(2*k)+n), return(0))); return(1) forprime(p=1, 16e5, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Jul 12 2016
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(2,1e6, 16,64,256,1024,4096); # Dana Jacobsen, Jul 13 2016