cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269457 a(n) = 5*(n + 1)*(n + 4)/2.

Original entry on oeis.org

10, 25, 45, 70, 100, 135, 175, 220, 270, 325, 385, 450, 520, 595, 675, 760, 850, 945, 1045, 1150, 1260, 1375, 1495, 1620, 1750, 1885, 2025, 2170, 2320, 2475, 2635, 2800, 2970, 3145, 3325, 3510, 3700, 3895, 4095, 4300, 4510, 4725, 4945, 5170, 5400, 5635
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

More generally, the ordinary generating function for the sequences of the form k*(n + 1)*(n - 1 + k)/2 is (k*(k - 1)/2 + (k*(3 - k)/2)*x)/(1 - x)^3 (see links section).

Examples

			a(0) = 0 + 1 + 2 + 3 + 4 = 10;
a(1) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 = 25;
a(2) = 0 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 45, etc.
		

Crossrefs

Programs

  • Magma
    [5*(n+1)*(n+4)/2: n in [0..50]]; // Vincenzo Librandi, Feb 28 2016
    
  • Mathematica
    Table[5 (n + 1) ((n + 4)/2), {n, 0, 45}]
    Table[Sum[5 (k + 2), {k, 0, n}], {n, 0, 45}]
    LinearRecurrence[{3, -3, 1}, {10, 25, 45}, 46]
  • PARI
    a(n) = 5*(n + 1)*(n + 4)/2; \\ Michel Marcus, Feb 29 2016
    
  • PARI
    Vec(5*(2-x)/(1-x)^3 + O(x^100)) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 5*(2 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} 5*(k + 2) = Sum_{k=0..n} A008587(k + 2).
Sum_{n>=0} 1/a(n) = 11/45 = 0.24444444444... = A040002.
a(n) = 5*A000096(n+1).
a(n) = A055998(2*n+2) + A055998(n+1). - Bruno Berselli, Sep 23 2016
E.g.f.: 5*exp(x)*(4 + 6*x + x^2)/2. - Elmo R. Oliveira, Dec 24 2024