A269661 a(n) = Product_{i=1..n} (5^i - 4^i).
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Crossrefs
Programs
-
Magma
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Mathematica
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *) Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *) FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
PARI
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
Formula
a(n) = Product_{i=1..n} A005060(i).
a(n) = 5^(binomial(n+1,2))*(4/5;4/5){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Mar 05 2016
a(n) ~ c * 5^(n*(n+1)/2), where c = QPochhammer(4/5) = 0.00336800585242312126... . - Vaclav Kotesovec, Oct 10 2016