cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A269819 Numbers that are congruent to {5, 11, 13, 19} mod 24.

Original entry on oeis.org

5, 11, 13, 19, 29, 35, 37, 43, 53, 59, 61, 67, 77, 83, 85, 91, 101, 107, 109, 115, 125, 131, 133, 139, 149, 155, 157, 163, 173, 179, 181, 187, 197, 203, 205, 211, 221, 227, 229, 235, 245, 251, 253, 259, 269, 275, 277, 283, 293, 299, 301, 307, 317
Offset: 1

Views

Author

Bob Selcoe, Mar 05 2016

Keywords

Comments

No terms are multiples of 3.
Numbers such that (j+5)*(j-5)/48 are positive integers. Equivalent to positive integers (m+3)*(m-2)/12, with m == {2,5,6,9} mod 12 (observation made in A268539 by M. F. Hasler, Mar 02 2016).

Crossrefs

Subsequence of A001651.
Cf. A268539.

Programs

  • Magma
    I:=[5,11,13,19]; [n le 4 select I[n] else Self(n-4) + 24 : n in [1..60]]; // Vincenzo Librandi, Mar 06 2016
    
  • Magma
    [n : n in [0..400] | n mod 24 in [5, 11, 13, 19]]; // Wesley Ivan Hurt, Jun 04 2016
  • Maple
    A269819:=n->6*n-3-(1-I)*I^(-n)-(1+I)*I^n: seq(A269819(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    Table[24 n + {5, 11, 13, 19}, {n, 0, 12}] // Flatten (* Michael De Vlieger, Mar 07 2016 *)
    Table[6n-3-(1-I)*I^(-n)-(1+I)*I^n, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
    LinearRecurrence[{2,-2,2,-1},{5,11,13,19},60] (* Harvey P. Dale, Nov 17 2017 *)
  • PARI
    Vec(x*(1+x)*(5-4*x+5*x^2)/((1-x)^2*(1+x^2)) + O(x^100)) \\ Colin Barker, Mar 06 2016
    

Formula

a(n) = a(n-4) + 24.
a(n) = sqrt(48*A268539(n) + 25).
G.f.: x*(1+x)*(5-4*x+5*x^2) / ((1-x)^2*(1+x^2)). - Colin Barker, Mar 06 2016
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = 6*n-3-(1-i)*i^(-n)-(1+i)*i^n for i=sqrt(-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/12. - Amiram Eldar, Dec 31 2021

Extensions

Incorrect term 252 replaced by two missing terms 251 and 253 by Colin Barker, Mar 06 2016