A269819 Numbers that are congruent to {5, 11, 13, 19} mod 24.
5, 11, 13, 19, 29, 35, 37, 43, 53, 59, 61, 67, 77, 83, 85, 91, 101, 107, 109, 115, 125, 131, 133, 139, 149, 155, 157, 163, 173, 179, 181, 187, 197, 203, 205, 211, 221, 227, 229, 235, 245, 251, 253, 259, 269, 275, 277, 283, 293, 299, 301, 307, 317
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Magma
I:=[5,11,13,19]; [n le 4 select I[n] else Self(n-4) + 24 : n in [1..60]]; // Vincenzo Librandi, Mar 06 2016
-
Magma
[n : n in [0..400] | n mod 24 in [5, 11, 13, 19]]; // Wesley Ivan Hurt, Jun 04 2016
-
Maple
A269819:=n->6*n-3-(1-I)*I^(-n)-(1+I)*I^n: seq(A269819(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
Table[24 n + {5, 11, 13, 19}, {n, 0, 12}] // Flatten (* Michael De Vlieger, Mar 07 2016 *) Table[6n-3-(1-I)*I^(-n)-(1+I)*I^n, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *) LinearRecurrence[{2,-2,2,-1},{5,11,13,19},60] (* Harvey P. Dale, Nov 17 2017 *)
-
PARI
Vec(x*(1+x)*(5-4*x+5*x^2)/((1-x)^2*(1+x^2)) + O(x^100)) \\ Colin Barker, Mar 06 2016
Formula
a(n) = a(n-4) + 24.
a(n) = sqrt(48*A268539(n) + 25).
G.f.: x*(1+x)*(5-4*x+5*x^2) / ((1-x)^2*(1+x^2)). - Colin Barker, Mar 06 2016
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
a(n) = 6*n-3-(1-i)*i^(-n)-(1+i)*i^n for i=sqrt(-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/12. - Amiram Eldar, Dec 31 2021
Extensions
Incorrect term 252 replaced by two missing terms 251 and 253 by Colin Barker, Mar 06 2016
Comments