cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270867 a(n) = n^3 + 2*n^2 + 4*n + 1.

Original entry on oeis.org

1, 8, 25, 58, 113, 196, 313, 470, 673, 928, 1241, 1618, 2065, 2588, 3193, 3886, 4673, 5560, 6553, 7658, 8881, 10228, 11705, 13318, 15073, 16976, 19033, 21250, 23633, 26188, 28921, 31838, 34945, 38248, 41753, 45466, 49393, 53540, 57913, 62518, 67361, 72448
Offset: 0

Views

Author

Vincenzo Librandi, Apr 01 2016

Keywords

Comments

Numbers of the type (m+1)^3 - (m-1)*m. Similar sequences are: A069778 with the closed form (m+1)^3 - m*(m+1), A152015 with (m+1)^3 - (m+1)*(m+2).

Crossrefs

Programs

  • Magma
    [n^3+2*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A270867:=n->n^3+2*n^2+4*n+1: seq(A270867(n), n=0..100); # Wesley Ivan Hurt, Apr 01 2016
  • Mathematica
    Table[n^3 + 2 n^2 + 4 n + 1, {n, 0, 40}]
  • PARI
    x='x+O('x^99); Vec((1+4*x-x^2+2*x^3)/(1-x)^4) \\ Altug Alkan, Apr 01 2016
    
  • Python
    for i in range(0,100):print(i**3+2*i**2+4*i+1) # Soumil Mandal, Apr 02 2016

Formula

O.g.f.: (1 + 4*x - x^2 + 2*x^3)/(1 - x)^4.
E.g.f.: (1 + 7*x + 5*x^2 + x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = -A270109(-n-1). - Bruno Berselli, Apr 01 2016
a(n+2) - 2*a(n+1) + a(n) = A016957(n+1). - Wesley Ivan Hurt, Apr 02 2016