cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A270868 a(n) = n^4 + 3*n^3 + 8*n^2 + 9*n + 2.

Original entry on oeis.org

2, 23, 92, 263, 614, 1247, 2288, 3887, 6218, 9479, 13892, 19703, 27182, 36623, 48344, 62687, 80018, 100727, 125228, 153959, 187382, 225983, 270272, 320783, 378074, 442727, 515348, 596567, 687038, 787439, 898472, 1020863, 1155362, 1302743, 1463804, 1639367
Offset: 0

Views

Author

Vincenzo Librandi, Apr 01 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^4+3*n^3+8*n^2+9*n+2: n in [0..40]];
  • Maple
    A270868:=n->n^4 + 3*n^3 + 8*n^2 + 9*n + 2: seq(A270868(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2016
  • Mathematica
    Table[n^4 + 3 n^3 + 8 n^2 + 9 n + 2, {n, 0, 40}]

Formula

G.f.: (2+13*x-3*x^2+13*x^3-x^4)/(1-x)^5.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5).
From G. C. Greubel, Apr 01 2016: (Start)
a(2*m) == 0 (mod 2).
a(4*m + 2) == 0 (mod 4).
E.g.f.: (2 +21*x +24*x^2 +9*x^3 +x^4)*exp(x). (End)
a(n)+a(n+2)-2*a(n+1) = 6*A033816(n+1). - Wesley Ivan Hurt, Apr 02 2016

A270869 a(n) = n^5 + 4*n^4 + 13*n^3 + 23*n^2 + 25*n + 3.

Original entry on oeis.org

3, 69, 345, 1203, 3351, 7953, 16749, 32175, 57483, 96861, 155553, 239979, 357855, 518313, 732021, 1011303, 1370259, 1824885, 2393193, 3095331, 3953703, 4993089, 6240765, 7726623, 9483291, 11546253, 13953969, 16747995, 19973103, 23677401, 27912453
Offset: 0

Views

Author

Vincenzo Librandi, Apr 03 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^5+4*n^4+13*n^3+23*n^2+25*n+3: n in [0..40]];
    
  • Mathematica
    Table[n^5 + 4 n^4 + 13 n^3 + 23 n^2 + 25 n + 3, {n, 0, 40}]
  • PARI
    x='x+O('x^99); Vec((3+51*x-24*x^2+108*x^3-27*x^4+9*x^5)/(1-x)^6) \\ Altug Alkan, Apr 03 2016

Formula

O.g.f.: (3 + 51*x - 24*x^2 + 108*x^3 - 27*x^4 + 9*x^5)/(1-x)^6.
E.g.f.: (3 + 66*x + 105*x^2 + 62*x^3 + 14*x^4 + x^5)*exp(x).
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6).

A270870 a(n) = n^6 + 5*n^5 + 19*n^4 + 44*n^3 + 72*n^2 + 69*n + 5.

Original entry on oeis.org

5, 215, 1311, 5531, 18329, 50775, 122675, 266411, 531501, 989879, 1741895, 2923035, 4711361, 7335671, 11084379, 16315115, 23465045, 33061911, 45735791, 62231579, 83422185, 110322455, 144103811, 186109611, 237871229, 301124855, 377829015, 470182811
Offset: 0

Views

Author

Vincenzo Librandi, Apr 03 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^6+5*n^5+19*n^4+44*n^3+72*n^2+69*n+5: n in [0..40]];
    
  • Mathematica
    Table[n^6 + 5 n^5 + 19 n^4 + 44 n^3 + 72 n^2 + 69 n + 5, {n, 0, 40}]
  • PARI
    x='x+O('x^99); Vec((5+180*x-89*x^2+694*x^3-207*x^4+158*x^5-21*x^6)/(1-x)^7) \\ Altug Alkan, Apr 03 2016

Formula

O.g.f.: (5 +180*x -89*x^2 +694*x^3 -207*x^4 +158*x^5 -21*x^6)/(1-x)^7.
E.g.f.: (5 +210*x +443*x^2 +373*x^3 +134*x^4 +20*x^5 +x^6)*exp(x).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).

A270871 a(n) = n^7 + 6*n^6 + 26*n^5 + 73*n^4 + 152*n^3 + 222*n^2 + 203*n + 8.

Original entry on oeis.org

8, 691, 5030, 25511, 100372, 324323, 898706, 2206135, 4914656, 10116467, 19506238, 35604071, 62028140, 103822051, 167841962, 263208503, 401828536, 598991795, 874047446, 1251165607, 1760188868, 2437578851, 3327462850, 4482785591, 5966571152, 7853300083
Offset: 0

Views

Author

Vincenzo Librandi, Apr 03 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^7+6*n^6+26*n^5+73*n^4+152*n^3+222*n^2+203*n+8: n in [0..40]];
    
  • Mathematica
    Table[n^7 + 6 n^6 + 26 n^5 + 73 n^4 + 152 n^3 + 222 n^2 + 203 n + 8, {n, 0, 40}]
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{8,691,5030,25511,100372,324323,898706,2206135},30] (* Harvey P. Dale, Dec 17 2023 *)
  • PARI
    x='x+O('x^99); Vec((8+627*x-274*x^2+4171*x^3-1012*x^4+1897*x^5-450*x^6+73*x^7) / (1-x)^8) \\ Altug Alkan, Apr 03 2016

Formula

G.f.: (8 + 627*x - 274*x^2 + 4171*x^3 - 1012*x^4 + 1897*x^5 - 450*x^6 + 73*x^7)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).

A270872 a(n) = n^8 + 7*n^7 + 34*n^6 + 111*n^5 + 275*n^4 + 511*n^3 + 703*n^2 + 623*n + 13.

Original entry on oeis.org

13, 2278, 19439, 117910, 550009, 2072078, 6584443, 18269614, 45445445, 103390294, 218437543, 433677158, 816642289, 1469399230, 2541499379, 4246292158, 6881138173, 10852102214, 16703746015, 25154681014, 37139581673, 53858400238, 76833564139, 107975977550
Offset: 0

Views

Author

Vincenzo Librandi, Apr 04 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^8+7*n^7+34*n^6+111*n^5+275*n^4+511*n^3+703*n^2+623*n+13: n in [0..40]];
    
  • Mathematica
    Table[n^8 + 7 n^7 + 34 n^6 + 111 n^5 + 275 n^4 + 511 n^3 + 703 n^2 + 623 n + 13, {n, 0, 40}]
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{13,2278,19439,117910,550009,2072078,6584443,18269614,45445445},30] (* Harvey P. Dale, Jan 14 2023 *)
  • PARI
    x='x+O('x^99); Vec((13+2161*x-595*x^2+23875*x^3-1091*x^4+19271*x^5-4997*x^6+1909*x^7-226*x^8)/(1-x)^9) \\ Altug Alkan, Apr 04 2016

Formula

G.f.: (13+2161*x-595*x^2+23875*x^3-1091*x^4+19271*x^5-4997*x^6+1909*x^7-226*x^8)/(1-x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9).

A270873 a(n) = n^9 + 8*n^8 + 43*n^7 + 159*n^6 + 452*n^5 + 997*n^4 + 1725*n^3 + 2272*n^2 + 1990*n + 21.

Original entry on oeis.org

21, 7668, 75545, 545730, 3015021, 13239896, 48243393, 151298070, 420233285, 1056651996, 2446142121, 5282430218, 10751650845, 20796493440, 38483939921, 68504620446, 117836491893, 196610583620, 319221957945, 505734798546, 783636668621, 1190003472168
Offset: 0

Views

Author

Vincenzo Librandi, Apr 04 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^9+8*n^8+43*n^7+159*n^6+452*n^5+997*n^4+1725*n^3+2272*n^2+1990*n+21: n in [0..40]];
    
  • Mathematica
    Table[n^9 + 8 n^8 + 43 n^7 + 159 n^6 + 452 n^5 + 997 n^4 + 1725 n^3 + 2272 n^2 + 1990 n + 21, {n, 0, 40}]
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{21,7668,75545,545730,3015021,13239896,48243393,151298070,420233285,1056651996},30] (* Harvey P. Dale, Dec 02 2018 *)
  • PARI
    my(x='x+O('x^99)); Vec((21+7458*x-190*x^2+132820*x^3+41496*x^4+187124*x^5-30698*x^6+30660*x^7-6565*x^8+754*x^9)/(1-x)^10) \\ Altug Alkan, Apr 04 2016

Formula

G.f.: (21+7458*x-190*x^2+132820*x^3+41496*x^4+187124*x^5-30698*x^6+30660*x^7-6565*x^8+754*x^9)/(1-x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).

A270874 a(n) = n^10 + 9*n^9 + 53*n^8 + 218*n^7 + 695*n^6 + 1754*n^5 + 3572*n^4 + 5854*n^3 + 7510*n^2 + 6559*n + 34.

Original entry on oeis.org

34, 26259, 294888, 2528263, 16531326, 84603579, 353479684, 1252968303, 3885899418, 10799026531, 27392790624, 64342966359, 141552806518, 294334006923, 582732259836, 1105171977919, 2017898582034, 3562049183283, 6100587181528, 10167796877991, 16534554287214
Offset: 0

Views

Author

Vincenzo Librandi, Apr 05 2016

Keywords

Crossrefs

Programs

  • Magma
    [n^10 +9*n^9 +53*n^8 +218*n^7 +695*n^6 +1754*n^5 +3572*n^4 +5854*n^3 +7510*n^2 +6559*n +34: n in [0..30]];
    
  • Mathematica
    Table[n^10 + 9 n^9 + 53 n^8 + 218 n^7 + 695 n^6 + 1754 n^5 + 3572 n^4 + 5854 n^3 + 7510 n^2 + 6559 n + 34, {n, 0, 30}]
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{34,26259,294888,2528263,16531326,84603579,353479684,1252968303,3885899418,10799026531,27392790624},30] (* Harvey P. Dale, Apr 10 2017 *)
  • PARI
    x='x+O('x^99); Vec((34+25885*x+7909*x^2+723130*x^3+617758*x^4+1806700*x^5+ 96940*x^6+428806*x^7-101360*x^8+25527*x^9-2529*x^10)/(1-x)^11) \\ Altug Alkan, Apr 05 2016

Formula

G.f.: (34+25885*x+7909*x^2+723130*x^3+617758*x^4+1806700*x^5+ 96940*x^6+428806*x^7-101360*x^8+25527*x^9-2529*x^10)/(1-x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11).
Showing 1-7 of 7 results.