cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A270994 a(n) = 9454129 + 11184810*n.

Original entry on oeis.org

9454129, 20638939, 31823749, 43008559, 54193369, 65378179, 76562989, 87747799, 98932609, 110117419, 121302229, 132487039, 143671849, 154856659, 166041469, 177226279, 188411089, 199595899, 210780709, 221965519, 233150329, 244335139, 255519949, 266704759, 277889569, 289074379, 300259189
Offset: 0

Views

Author

Altug Alkan, Mar 28 2016

Keywords

Comments

See A270971 for the motivation.
These are all Sierpiński numbers.
Since 9454129 is a term of A244561, for every integer k > 0, 9454129*2^k + 1 has a divisor in the set {3, 5, 7, 13, 17, 241}. And because 11184810 = 2*3*5*7*13*17*241, a(n)*2^k + 1 = 9454129*2^k + 1 + 11184810*n*2^k + 1 always has a divisor in the set {3, 5, 7, 13, 17, 241}. Since a(n) is always odd because of its definition, a(n) is a Sierpiński number.
Also 9454129 + 28 = 9454157 is a term of A244561. So, with the same proof, a(n) + 28 is a Sierpiński number too.
Are a(n) and a(n) + 28 always consecutive Sierpiński numbers?

Examples

			a(1) = 9454129 + 11184810*1 = 20638939.
		

Crossrefs

Programs

  • Magma
    [9454129 + 11184810*n: n in [0..30]]; // Vincenzo Librandi, Mar 29 2016
    
  • Maple
    A270994:=n->9454129 + 11184810*n: seq(A270994(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
  • Mathematica
    Table[9454129 + 11184810*n, {n, 0, 100}] (* G. C. Greubel, Mar 28 2016 *)
  • PARI
    a(n) = 9454129 + 11184810*n;
    
  • PARI
    x='x+O('x^99); Vec((9454129+1730681*x)/(1-x)^2)
    
  • Python
    for n in range(0,100):print(9454129+11184810*n) # Soumil Mandal, Apr 03 2016

Formula

G.f.: (9454129 + 1730681*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 1.

A271027 a(n) = 3661529 + 11184810*n.

Original entry on oeis.org

3661529, 14846339, 26031149, 37215959, 48400769, 59585579, 70770389, 81955199, 93140009, 104324819, 115509629, 126694439, 137879249, 149064059, 160248869, 171433679, 182618489, 193803299, 204988109, 216172919, 227357729, 238542539, 249727349, 260912159, 272096969, 283281779, 294466589
Offset: 0

Views

Author

Altug Alkan, Mar 29 2016

Keywords

Comments

a(n) and a(n) + 14 are the members of A101036.
14 appears as a minimum difference between Riesel numbers for the first 15000 terms that are listed in b-file of A101036.

Examples

			a(1) = 3661529 + 11184810*1 = 14846339.
		

Crossrefs

Programs

  • Magma
    [3661529 + 11184810*n : n in [0..40]]; // Wesley Ivan Hurt, Apr 02 2016
  • Maple
    A271027:=n->3661529 + 11184810*n: seq(A271027(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
  • Mathematica
    CoefficientList[Series[(3661529 + 7523281 x)/(1 - x)^2, {x, 0, 26}], x] (* Michael De Vlieger, Mar 29 2016 *)
    LinearRecurrence[{2,-1},{3661529,14846339},30] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    a(n) = 3661529 + 11184810*n;
    
  • PARI
    x='x+O('x^99); Vec((3661529+7523281*x)/(1-x)^2)
    
  • Python
    for n in range(0,100):print(3661529+11184810*n) # Soumil Mandal, Apr 03 2016
    

Formula

G.f.: (3661529 + 7523281*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>1.

A271080 Integers k such that s(k) = 7523267 + 11184810*k and s(k) + 14 are consecutive primes.

Original entry on oeis.org

8, 16, 82, 101, 132, 187, 201, 253, 265, 300, 318, 351, 393, 408, 429, 449, 474, 489, 508, 660, 662, 673, 687, 772, 869, 877, 880, 924, 945, 958, 963, 984, 1028, 1042, 1070, 1083, 1124, 1134, 1226, 1249, 1257, 1265, 1319, 1340, 1345, 1352, 1365, 1389, 1463, 1664, 1816, 1834, 1878, 1969
Offset: 1

Views

Author

Altug Alkan, Mar 30 2016

Keywords

Comments

s(k) and s(k) + 14 are always Sierpiński numbers for k >= 0.
Motivated by the question: What are the consecutive Sierpiński numbers with difference 14 that are also consecutive primes?
See A270971 and A270993 for the reason for the definition's focus on 14.
How does the graph of this sequence look for larger values of n?

Examples

			8 is a term because 7523267 + 11184810*8 = 97001747 and 97001761 are consecutive (provable) Sierpiński numbers and they are also consecutive primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 2000, And[PrimeQ@ #, NextPrime@ # == # + 14] &@(7523267 + 11184810 #) &] (* Michael De Vlieger, Mar 30 2016 *)
    cpQ[n_]:=Module[{c=7523267+11184810n},PrimeQ[c]&&NextPrime[c]==c+14]; Select[Range[ 2000],cpQ] (* Harvey P. Dale, Oct 07 2023 *)
  • PARI
    lista(nn) = for(n=0, nn, if(ispseudoprime(s=7523267 + 11184810*n) && nextprime(s+1) == (s+14), print1(n, ", ")));
    
  • PARI
    is(n)=my(s=11184810*n+7523267); isprime(s) && isprime(s+14) && !isprime(s+6) && !isprime(s+12) \\ Charles R Greathouse IV, Mar 31 2016
Showing 1-3 of 3 results.