cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A271356 Difference sequence of the sequence A271354 of the increasing sequence of products of two distinct Fibonacci numbers greater than 1.

Original entry on oeis.org

4, 5, 1, 8, 2, 13, 1, 2, 21, 2, 3, 34, 2, 1, 5, 55, 3, 2, 8, 89, 5, 1, 2, 13, 144, 8, 2, 3, 21, 233, 13, 2, 1, 5, 34, 377, 21, 3, 2, 8, 55, 610, 34, 5, 1, 2, 13, 89, 987, 55, 8, 2, 3, 21, 144, 1597, 89, 13, 2, 1, 5, 34, 233, 2584, 144, 21, 3, 2, 8, 55, 377
Offset: 1

Views

Author

Clark Kimberling, May 02 2016

Keywords

Comments

Conjecture: every term except the first is a Fibonacci number.

Crossrefs

Programs

  • Mathematica
    z = 100; f[n_] := Fibonacci[n];
    t = Take[Sort[Flatten[Table[f[m] f[n], {n, 3, z}, {m, 3, n - 1}]]], 1000];
    Differences[t]

A272949 Products of three distinct Fibonacci numbers > 1.

Original entry on oeis.org

30, 48, 78, 80, 120, 126, 130, 195, 204, 208, 210, 312, 315, 330, 336, 340, 504, 510, 520, 534, 544, 546, 550, 816, 819, 825, 840, 864, 880, 884, 890, 1320, 1326, 1335, 1360, 1365, 1398, 1424, 1428, 1430, 1440, 2136, 2142, 2145, 2160, 2184, 2200, 2210, 2262
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			a(1) = 30 = 2*3*5.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^9; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[ (c = F[h++]*b) < up, Sow@c ]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)

A272947 Number of factors Fibonacci(i) > 1 of A160009(n+1).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009(15) = 30 = 2*3*5, so that a(15) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)

A274349 Products of two distinct Lucas numbers (2,3,4,7,11,18,...).

Original entry on oeis.org

6, 8, 12, 14, 21, 22, 28, 33, 36, 44, 54, 58, 72, 77, 87, 94, 116, 126, 141, 152, 188, 198, 203, 228, 246, 304, 319, 329, 369, 398, 492, 517, 522, 532, 597, 644, 796, 836, 846, 861, 966, 1042, 1288, 1353, 1363, 1368, 1393, 1563, 1686, 2084, 2189, 2204, 2214
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			6 = 2*3, 44 = 4*11.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    L:= gfun:-rectoproc({f(n)=f(n-1)+f(n-2),f(0)=2,f(1)=1},f(n),remember):
    S:= {}:
    for i from 2 do
      u:= L(i);
      if u > N then break fi;
      for j from 0 to i-1 do
        if j = 1 then next fi;
        v:= u*L(j);
        if v > N then break fi;
        S:= S union {v};
    od od:
    sort(convert(S,list)); # Robert Israel, Jan 01 2021
  • Mathematica
    z = 100; f[n_] := LucasL[n]; f[1] = 2 ;
    Take[Sort[Flatten[Table[f[u] f[v], {u, 1, z}, {v, 1, u - 1}]]], z]
    Take[Times@@@Subsets[Join[{2},LucasL[Range[2,20]]],{2}]//Union,60] (* Harvey P. Dale, Aug 13 2019 *)

A274348 Products of three distinct Lucas numbers (3,4,7,11,18,...)

Original entry on oeis.org

84, 132, 216, 231, 308, 348, 378, 504, 564, 594, 609, 792, 812, 912, 957, 987, 1276, 1316, 1386, 1476, 1551, 1566, 1596, 2068, 2088, 2128, 2233, 2388, 2508, 2538, 2583, 3344, 3384, 3444, 3619, 3654, 3864, 4059, 4089, 4104, 4179, 5412, 5452, 5472, 5572, 5742
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			84 = 3*4*7, 132 = 3*4*11.
		

Crossrefs

Programs

  • Mathematica
    z = 100; f[n_] := LucasL[n];
    Take[Sort[Flatten[Table[f[u] f[v] f[w], {u, 2, z}, {v, 2, u - 1}, {w, 2, v - 1}]]], z]

A272948 Positions of Fibonacci numbers in ordered sequence A160009 of all products of Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 56, 70, 87, 108, 133, 163, 199, 242, 292, 352, 421, 504, 599, 712, 841, 994, 1167, 1371, 1602, 1873, 2179, 2535, 2936, 3401, 3924, 4528, 5206, 5985, 6858, 7857, 8976, 10252, 11679, 13299, 15109, 17159, 19446, 22028
Offset: 1

Views

Author

Clark Kimberling, May 13 2016

Keywords

Examples

			A160009 = (0,1,2,3,5,6,8,10,13,15,16,21,...), so that a = (1,2,3,4,5,7,9,12,...).
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)

Extensions

More terms from Rémy Sigrist, Mar 17 2019

A272950 Products of four distinct Fibonacci numbers > 1.

Original entry on oeis.org

240, 390, 624, 630, 1008, 1020, 1040, 1560, 1632, 1638, 1650, 1680, 2520, 2640, 2652, 2670, 2720, 2730, 4080, 4095, 4272, 4284, 4290, 4320, 4368, 4400, 4420, 6552, 6600, 6630, 6912, 6930, 6942, 6990, 7072, 7120, 7140, 7150, 10608, 10680, 10710, 10725, 10920
Offset: 1

Views

Author

Clark Kimberling, May 14 2016

Keywords

Examples

			a(1) = 240 = 2*3*5*8.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s =  Prepend[s, 0]; Take[s, 100]  (* A160009 *)
    isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
    ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
    Map[Length, ans] (* A272947 *)
    Flatten[Position[Map[Length, ans], 1]]  (* A272948 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]]  (* A000045 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]]  (* A271354 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]]  (* A272949 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]]  (* A272950 *)
    (* Peter J. C. Moses, May 11 2016 *)
    up=10^6; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[(c = F[h++]*b) < up, k=h; While[ (d = F[k++]*c) < up, Sow@d ]]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)
  • PARI
    list(lim)=my(v=List(),F,best=5,t2,t3,t4,j,k,l); while(fibonacci(best++)<=30*lim,); F=vector(best,i,fibonacci(i)); for(i=6,best, j=4; while(j++Charles R Greathouse IV, May 14 2016

A274347 Products of two distinct Lucas numbers (3,4,7,11,18,...).

Original entry on oeis.org

12, 21, 28, 33, 44, 54, 72, 77, 87, 116, 126, 141, 188, 198, 203, 228, 304, 319, 329, 369, 492, 517, 522, 532, 597, 796, 836, 846, 861, 966, 1288, 1353, 1363, 1368, 1393, 1563, 2084, 2189, 2204, 2214, 2254, 2529, 3372, 3542, 3567, 3572, 3582, 3647, 4092
Offset: 1

Author

Clark Kimberling, Jun 18 2016

Keywords

Comments

L(i)*L(j) = L(i+j) + (-1)^i*L(j-i). - Robert Israel, Sep 02 2019

Examples

			12 = 3*4, 21 = 3*7.
		

Crossrefs

Programs

  • Maple
    L:= gfun:-rectoproc({f(n+1)=f(n)+f(n-1),f(0)=2,f(1)=1},f(n),remember):
    Q:= proc(n) local j; op(sort([seq(L(n)+(-1)^j*L(n-2*j),j=2..(n-1)/2)])) end proc:
    map(Q, [$5..20]); # Robert Israel, Sep 02 2019
  • Mathematica
    z = 100; f[n_] := LucasL[n];
    Take[Sort[Flatten[Table[f[u] f[v], {u, 2, z}, {v, 2, u - 1}]]], z]

A049999 a(n) = smallest index k such that Fibonacci(k) = d(n), where d = A049998 (sequence of first differences of ordered products of Fibonacci numbers, i.e., of A049997, with no duplicates).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 5, 4, 1, 1, 6, 5, 1, 3, 7, 6, 1, 1, 4, 8, 7, 3, 1, 5, 9, 8, 4, 1, 1, 6, 10, 9, 5, 1, 3, 7, 11, 10, 6, 1, 1, 4, 8, 12, 11, 7, 3, 1, 5, 9, 13, 12, 8, 4, 1, 1, 6, 10, 14, 13, 9, 5, 1, 3, 7, 11, 15, 14, 10, 6, 1, 1, 4, 8, 12, 16, 15, 11
Offset: 1

Keywords

Comments

"David W. Wilson conjectured (Dec 14 2005) that" sequence A049998 "consists only of Fibonacci numbers. Proofs were found by Franklin T. Adams-Watters and Don Reble, Dec 14 2005." - Petros Hadjicostas, Nov 08 2019 [This comment was copied from A049998, which includes Don Reble's proof of the conjecture.]

Examples

			From _Petros Hadjicostas_, Nov 08 2019: (Start)
A049998(1) = 1 = Fibonacci(1) = Fibonacci(2), so a(1) = min(1,2) = 1.
A049998(7) = 2 = Fibonacci(3), so a(7) = 3.
A049998(10) = 3 = Fibonacci(4), so a(10) = 4.
A049998(13) = 5 = Fibonacci(5), so a(13) = 5.
A049998(17) = 8 = Fibonacci(6), so a(17) = 6. (End)
		

Formula

A000045(a(n)) = A049998(n) = A049997(n) - A049997(n-1) for n >= 1. - Petros Hadjicostas, Nov 08 2019

Extensions

Name edited by and more terms from Petros Hadjicostas, Nov 08 2019
Showing 1-9 of 9 results.