A271423
Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 16, 25, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 169, 406, 245, 35, 21, 0, 1, 0, 541, 2093, 1036, 385, 56, 28, 0, 1, 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1, 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1
Offset: 0
T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.
T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,4) = 1: 1|2|3|4.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 5, 9, 0, 1;
0, 16, 25, 10, 0, 1;
0, 82, 70, 35, 15, 0, 1;
0, 169, 406, 245, 35, 21, 0, 1;
0, 541, 2093, 1036, 385, 56, 28, 0, 1;
0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1;
0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1;
...
Columns k=0-10 give:
A000007,
A007837 (for n>0),
A271731,
A271732,
A271733,
A271734,
A271735,
A271736,
A271737,
A271738,
A271739.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
end:
T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
A271426
Number of set partitions of [n] with minimal block length multiplicity equal to one.
Original entry on oeis.org
0, 1, 1, 4, 11, 51, 132, 771, 3089, 18388, 96423, 627529, 3349018, 24510305, 155908651, 1171494200, 8647906143, 71603237483, 572103586280, 5172888505403, 43344865682187, 416735802793600, 3830340992280773, 38239507035358011, 374336654847685014
Offset: 0
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0,$k..n/i})))
end:
a:= n-> b(n$2, 1)-b(n$2, 2):
seq(a(n), n=0..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 1] - b[n, n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 07 2018, after Alois P. Heinz *)
A271715
Number of set partitions of [3n] with minimal block length multiplicity equal to n.
Original entry on oeis.org
1, 4, 55, 1540, 67375, 4239235, 383563180, 51925673800, 10652498631775, 3139051466175625, 1228555090548911125, 602267334323068414000, 357161594247065690582500, 250870551734754490461422500, 205672479804595549379158525000, 194557626586812183102927448930000
Offset: 0
-
a:= proc(n) option remember; `if`(n<5,
[1, 4, 55, 1540, 67375][n+1], ((2*(3*n-2))*
(3*n-1)*(n^2-n-9)*a(n-1) -(3*(n-3))*(3*n-1)*
(3*n-4)*(3*n-2)*(3*n-5)*a(n-2))/(4*n*(n-4)))
end:
seq(a(n), n=0..20);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i&, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]];
a[n_] := If[n==0, 1, b[3n, 3n, n] - b[3n, 3n, n+1]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz in A271424 *)
A271762
Number of set partitions of [n] with minimal block length multiplicity equal to two.
Original entry on oeis.org
1, 0, 3, 0, 55, 105, 945, 1218, 15456, 26785, 705573, 2502786, 32988670, 169561483, 1757881723, 10231748010, 84389906941, 540218433147, 6899156019034, 41756989590256, 554960234199955, 4793361957432730, 59690079139252499, 558283841454550850, 7093218105977514525
Offset: 2
a(4) = 3: 12|34, 13|24, 14|23.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 2)-b(n$2, 3):
seq(a(n), n=2..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 2] - b[n, n, 3];
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271763
Number of set partitions of [n] with minimal block length multiplicity equal to three.
Original entry on oeis.org
1, 0, 0, 15, 0, 0, 1540, 3150, 24255, 81235, 496210, 605605, 36987951, 13833820, 849333940, 24419945732, 111237098546, 1219799147204, 16146398449224, 109697049177254, 1037441240056529, 9042707959752775, 84237798887033660, 614681985047225810
Offset: 3
a(6) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 3)-b(n$2, 4):
seq(a(n), n=3..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 3] - b[n, n, 4];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271764
Number of set partitions of [n] with minimal block length multiplicity equal to four.
Original entry on oeis.org
1, 0, 0, 0, 105, 0, 0, 0, 67375, 135135, 1261260, 675675, 50925875, 97847750, 703993290, 6215737710, 228687298476, 58017429575, 11262925616250, 72813288304295, 2841531210935725, 11311740884766630, 252469888906590355, 2207276997956560530, 28579415631325499655
Offset: 4
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 4)-b(n$2, 5):
seq(a(n), n=4..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 4] - b[n, n, 5];
Table[a[n], {n, 4, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271765
Number of set partitions of [n] with minimal block length multiplicity equal to five.
Original entry on oeis.org
1, 0, 0, 0, 0, 945, 0, 0, 0, 0, 4239235, 7567560, 82702620, 41351310, 1658646990, 24448068645, 117626817945, 239611442070, 8260908743395, 1834189492520, 4508736346382576, 2979073800027325, 256635727575051825, 2371542394294648575, 16374593589666387075
Offset: 5
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 5)-b(n$2, 6):
seq(a(n), n=5..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 5] - b[n, n, 6];
Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271766
Number of set partitions of [n] with minimal block length multiplicity equal to six.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 10395, 0, 0, 0, 0, 0, 383563180, 523783260, 6547290750, 3055402350, 157964301495, 14054850810, 34828180582195, 91670862398500, 448593283888750, 11612610774464700, 7681370284312725, 6594450798260325, 179804372693675480751, 11896760875264765500
Offset: 6
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 6)-b(n$2, 7):
seq(a(n), n=6..30);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 6] - b[n, n, 7];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271767
Number of set partitions of [n] with minimal block length multiplicity equal to seven.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 135135, 0, 0, 0, 0, 0, 0, 51925673800, 43212118950, 607370338575, 265034329560, 17166996346500, 1305093289500, 584129638842750, 56071685084790375, 176898040019801100, 518112685551586125, 26529011711988035250, 4672320885518286000
Offset: 7
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 7)-b(n$2, 8):
seq(a(n), n=7..35);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 7] - b[n, n, 8];
Table[a[n], {n, 7, 35}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
A271768
Number of set partitions of [n] with minimal block length multiplicity equal to eight.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 2027025, 0, 0, 0, 0, 0, 0, 0, 10652498631775, 4141161399375, 64602117830250, 26428139112375, 2096632369581750, 137561852302875, 80768458994973750, 609202488769875, 158980016052580597875, 353341814230502847750, 1344898884799733513250
Offset: 8
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 8)-b(n$2, 9):
seq(a(n), n=8..35);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 8] - b[n, n, 9];
Table[a[n], {n, 8, 35}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
Showing 1-10 of 12 results.
Comments