cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A246036 Expansion of (1+4*x)/((1+2*x)*(1-4*x)).

Original entry on oeis.org

1, 6, 20, 88, 336, 1376, 5440, 21888, 87296, 349696, 1397760, 5593088, 22368256, 89481216, 357908480, 1431666688, 5726601216, 22906535936, 91625881600, 366504050688, 1466015154176, 5864062713856, 23456246661120, 93824995033088, 375299963355136, 1501199886974976, 6004799480791040, 24019198057381888
Offset: 0

Views

Author

N. J. A. Sloane, Aug 21 2014

Keywords

Comments

Also, fourth moments of Rudin-Shapiro polynomials (see Doche, Doche-Habsieger, Ekhad papers). - Doron Zeilberger, Apr 15 2016

Crossrefs

Programs

  • Magma
    I:=[1,6]; [n le 2 select I[n] else 2*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 22 2014
    
  • Mathematica
    CoefficientList[Series[(1+4x)/((1+2x)(1-4x)), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2014 *)
  • PARI
    Vec((1+4*x)/((1+2*x)*(1-4*x)) + O(x^100)) \\ Colin Barker, Aug 22 2014
    
  • PARI
    apply( A246036(n)=(4^(1+n)-(-2)^n)/3, [0..30]) \\ M. F. Hasler, Sep 18 2020
    
  • SageMath
    A246036= BinaryRecurrenceSequence(2,8,1,6)
    [A246036(n) for n in range(41)] # G. C. Greubel, Mar 08 2023

Formula

a(n) = 2*a(n-1) + 8*a(n-2).
a(n) = (4^(1+n) - (-2)^n)/3. - Colin Barker, Aug 22 2014
a(n) = A054881(n+3)/8. - L. Edson Jeffery, Apr 22 2015
a(n) = A003683(n+2)/2 and the above formula follow from the explicit expression for a(n), cf. second formula. - M. F. Hasler, Sep 11 2020
a(n) = 2^n*A001045(n+2). - R. J. Mathar, Mar 08 2021

A271494 Expansion of (1+16*x)/((1+4*x)*(1-8*x)).

Original entry on oeis.org

1, 20, 112, 1088, 7936, 66560, 520192, 4210688, 33488896, 268697600, 2146435072, 17184063488, 137422176256, 1099578736640, 8795824586752, 70369817919488, 562945658454016, 4503616807239680, 36028728299487232, 288230651029618688, 2305841909702066176, 18446748471756062720
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2016

Keywords

Comments

Sixth moments of the Rudin-Shapiro polynomials.

References

  • Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
  • Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+16x)/((1+4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,32},{1,20},30] (* Harvey P. Dale, May 13 2017 *)
  • PARI
    Vec((1+16*x)/((1+4*x)*(1-8*x)) + O(x^50)) \\ Colin Barker, Apr 17 2016

Formula

From Colin Barker, Apr 17 2016: (Start)
a(n) = 2^(1+3*n)-(-4)^n.
a(n) = 4*a(n-1) + 32*a(n-2) for n>1.
(End)
a(n) = 4^n*A014551(n+1). - R. J. Mathar, Mar 08 2021

A271495 Eighth moments of the Rudin-Shapiro polynomials.

Original entry on oeis.org

1, 70, 668, 14104, 198640, 3420256, 53143488, 864838016, 13714054912, 220102985216, 3513567575040, 56284226394112, 900460612808704, 14414430456537088, 230619566685274112, 3689872453256970240, 59031392914560188416, 944463240632040030208, 15111217402853747064832
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2016

Keywords

References

  • Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016.
  • Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016.

Crossrefs

Formula

G.f.: -(90194313216*t^11 -15300820992*t^10 -1979711488*t^9 -292552704*t^8 -22216704*t^7 +10649600*t^6 -1024*t^5 -144384*t^4 +7008*t^3 +664*t^2 -54*t -1) / (8*t+1) / (16*t-1) / (1409286144*t^10 -264241152*t^9 -25690112*t^8 -4128768*t^7 -311296*t^6 +170496*t^5 -2624*t^4 -2208*t^3 +148*t^2 +8*t -1).
Showing 1-3 of 3 results.