cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271535 a(n) = ( n*(n + 1)*(2*n + 1)/6 )^2.

Original entry on oeis.org

0, 1, 25, 196, 900, 3025, 8281, 19600, 41616, 81225, 148225, 256036, 422500, 670761, 1030225, 1537600, 2238016, 3186225, 4447881, 6100900, 8236900, 10962721, 14402025, 18696976, 24010000, 30525625, 38452401, 48024900, 59505796, 73188025, 89397025, 108493056
Offset: 0

Views

Author

Vincenzo Librandi, Apr 20 2016

Keywords

Crossrefs

Programs

  • Magma
    [(n*(n+1)*(2*n+1)/6)^2: n in [0..50]];
    
  • Mathematica
    Table[(n (n + 1) (2 n + 1)/6)^2, {n, 0, 50}]
  • PARI
    vector(100, n, n--; (n*(n + 1)*(2*n + 1)/6)^2) \\ Altug Alkan, Apr 21 2016

Formula

G.f.: x*(1 + 18*x + 42*x^2 + 18*x^3 + x^4)/(1 - x)^7.
a(n) = Sum_{j=1..n} Sum_{i=1..n} (i*j)^2. - Alexander Adamchuk, Oct 26 2004
E.g.f.: x*(36 + 414*x + 744*x^2 + 393*x^3 + 72*x^4 + 4*x^5)*exp(x)/36. - Ilya Gutkovskiy, Apr 21 2016
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
Sum_{i = 0..n} a(i) = n*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3)*(5*n^2 + 10*n - 1)/1260. [See Carmichael - DeLand in Links section, page 132.]
a(n) = A000330(n)^2. - Ray Chandler, Apr 21 2016
Sum_{n>=1} 1/a(n) = 84*Pi^2 - 828. - Amiram Eldar, Feb 25 2023

Extensions

Edited by Bruno Berselli, Apr 22 2016