A272066 a(n) = (10^n-1)^3.
0, 729, 970299, 997002999, 999700029999, 999970000299999, 999997000002999999, 999999700000029999999, 999999970000000299999999, 999999997000000002999999999, 999999999700000000029999999999, 999999999970000000000299999999999, 999999999997000000000002999999999999
Offset: 0
Examples
From _Seiichi Manyama_, Sep 18 2018: (Start) n| a(n) can be divided into 3 parts for n > 1. -+-------------------------------------------- 1| 72 9 2| 9 702 99 3| 99 7002 999 4| 999 70002 9999 (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (1111,-112110,1111000,-1000000).
Programs
-
Magma
[(10^n-1)^3 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016
-
Maple
A272066:=n->(10^n-1)^3: seq(A272066(n), n=0..15); # Wesley Ivan Hurt, Apr 19 2016
-
Mathematica
(10^Range[0, 10] - 1)^3 (* Wesley Ivan Hurt, Apr 19 2016 *)
-
PARI
a(n) = (10^n-1)^3; \\ Michel Marcus, Apr 19 2016
-
Ruby
(0..n).each{|i| p ('9' * i).to_i ** 3}
Formula
a(n) = A002283(n)^3.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 729*x*(1 + 220*x + 1000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
E.g.f.: (-1 + 3*exp(9*x) - 3*exp(99*x) + exp(999*x))*exp(x). (End)
Comments