cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A059988 a(n) = (10^n - 1)^2.

Original entry on oeis.org

0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
Offset: 0

Views

Author

Henry Bottomley, Mar 07 2001

Keywords

Comments

From James D. Klein, Feb 05 2012: (Start)
The periods of the reciprocals of a(n) are the consecutive integers from 0 to 10^n-1, omitting the one integer 10^n-2, right-justified in field widths of size n.
E.g.:
1/81 = 0.012345679...
1/9801 = 0.000102030405060708091011...9799000102...
1/998001 = 0.000001002003004005...997999000001002... (End)
Sum of first 10^n - 1 odd numbers. - Arkadiusz Wesolowski, Jun 12 2013

Examples

			From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 81 = 9^2;
n=2: ................... 9801 = 99^2;
n=3: ................. 998001 = 999^2;
n=4: ............... 99980001 = 9999^2;
n=5: ............. 9999800001 = 99999^2;
n=6: ........... 999998000001 = 999999^2;
n=7: ......... 99999980000001 = 9999999^2;
n=8: ....... 9999999800000001 = 99999999^2;
n=9: ..... 999999998000000001 = 999999999^2. (End)
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 34.

Crossrefs

Programs

Formula

a(n) = 81*A002477(n) = A002283(n)^2 = (9*A002275(n))^2.
a(n) = {999... (n times)}^2 = {999... (n times), 000... (n times)} - {999... (n times)}. For example, 999^2 = 999000 - 999 = 998001. - Kyle D. Balliet, Mar 07 2009
a(n) = (A002283(n-1)*10 + 8) * 10^(n-1) + 1, for n>0. - Reinhard Zumkeller, May 31 2010
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 81*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
E.g.f.: (1 - 2*exp(9*x) + exp(99*x))*exp(x). (End)
Sum_{n>=1} 1/a(n) = (log(10)*(QPolyGamma(0, 1, 1/10) - log(10/9)) + QPolyGamma(1, 1, 1/10))/log(10)^2 = 0.012448721523422795191... . - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3). - Elmo R. Oliveira, Aug 02 2025

A272067 a(n) = (10^n-1)^4.

Original entry on oeis.org

0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2016

Keywords

Comments

The sum of the digits of a(n) is divisible by 18. For example, 9^4 = 6561 and 6 + 5 + 6 + 1 = 18 * 1.
Number of 9 in a(n) is 2*n-2 for n > 0. - Seiichi Manyama, Sep 18 2018

Examples

			From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 4 parts for n > 1.
-+--------------------------------------------
1|        65        61
2|   9   605   9   601
3|  99  6005  99  6001
4| 999 60005 999 60001
(End)
		

Crossrefs

Programs

Formula

a(n) = A059988(n)^2 = A002283(n)^4.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)).
E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End)

A272068 a(n) = (10^n-1)^5.

Original entry on oeis.org

0, 59049, 9509900499, 995009990004999, 99950009999000049999, 9999500009999900000499999, 999995000009999990000004999999, 99999950000009999999000000049999999, 9999999500000009999999900000000499999999, 999999995000000009999999990000000004999999999, 99999999950000000009999999999000000000049999999999
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2016

Keywords

Comments

The sum of the digits of a(n) is divisible by 27. For example, 9^5 = 59049 and 5 + 9 + 0 + 4 + 9 = 27 * 1.
Number of 9 in a(n) is 3*n-1 for n > 0. - Seiichi Manyama, Sep 18 2018

Examples

			From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 5 parts for n > 1.
-+--------------------------------------------
1|        5    9    04    9
2|   9   50   99   004   99
3|  99  500  999  0004  999
4| 999 5000 9999 00004 9999
(End)
		

Crossrefs

Programs

Formula

a(n) = A002283(n)^5.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 59049*x*(1 + 49940*x + 78366000*x^2 + 4994000000*x^3 + 10000000000*x^4)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)*(1 - 100000*x)).
E.g.f.: -exp(x) + 5*exp(10*x) - 10*exp(100*x) + 10*exp(1000*x) - 5*exp(10000*x) + exp(100000*x). (End)

A067074 a(n) = smallest cube m^3 such that the sum of the digits of m^3 is equal to n^3.

Original entry on oeis.org

0, 1, 8, 19683, 1693669888, 39677989979796875, 56984998629886989599887999587
Offset: 0

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

If n = 6*k, a(n) <= A272066(n^3/18). - Seiichi Manyama, Aug 12 2017

Examples

			a(3) = 19683 as it is the smallest cube whose digit sum = 27 = 3^3.
		

Crossrefs

Formula

a(n) = A067075(n)^3. - R. J. Mathar, Aug 23 2018

Extensions

Corrected by Stefan Steinerberger, Nov 09 2005, using existing corrections to A067075
a(0)=0 prepended by Seiichi Manyama, Aug 12 2017

A297785 Decimal expansion of 4099200041/9999^3.

Original entry on oeis.org

0, 0, 4, 1, 0, 0, 4, 3, 0, 0, 4, 7, 0, 0, 5, 3, 0, 0, 6, 1, 0, 0, 7, 1, 0, 0, 8, 3, 0, 0, 9, 7, 0, 1, 1, 3, 0, 1, 3, 1, 0, 1, 5, 1, 0, 1, 7, 3, 0, 1, 9, 7, 0, 2, 2, 3, 0, 2, 5, 1, 0, 2, 8, 1, 0, 3, 1, 3, 0, 3, 4, 7, 0, 3, 8, 3, 0, 4, 2, 1, 0, 4, 6, 1, 0, 5
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2018

Keywords

Examples

			0.0041004300470053006100710083009701130131015101730197...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[4099200041/9999^3, 10, 100, -1]] (* Paolo Xausa, Jun 16 2024 *)

Formula

Sum_{k>=0} 10^(-4*k-4)*A202018(k) = 4099200041/9999^3.

A297786 Decimal expansion of 10980011/999^3.

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 0, 1, 7, 0, 2, 3, 0, 3, 1, 0, 4, 1, 0, 5, 3, 0, 6, 7, 0, 8, 3, 1, 0, 1, 1, 2, 1, 1, 4, 3, 1, 6, 7, 1, 9, 3, 2, 2, 1, 2, 5, 1, 2, 8, 3, 3, 1, 7, 3, 5, 3, 3, 9, 1, 4, 3, 1, 4, 7, 3, 5, 1, 7, 5, 6, 3, 6, 1, 1, 6, 6, 1, 7, 1, 3, 7, 6, 7, 8, 2, 3
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Examples

			0.011013017023031041053067083101121...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[10980011/999^3,10,120][[1]]] (* Harvey P. Dale, Aug 20 2021 *)

Formula

Sum_{k>=0} 10^(-3*k-3)*A048058(k) = 10980011/999^3.

A297787 Decimal expansion of 16968017/999^3.

Original entry on oeis.org

0, 1, 7, 0, 1, 9, 0, 2, 3, 0, 2, 9, 0, 3, 7, 0, 4, 7, 0, 5, 9, 0, 7, 3, 0, 8, 9, 1, 0, 7, 1, 2, 7, 1, 4, 9, 1, 7, 3, 1, 9, 9, 2, 2, 7, 2, 5, 7, 2, 8, 9, 3, 2, 3, 3, 5, 9, 3, 9, 7, 4, 3, 7, 4, 7, 9, 5, 2, 3, 5, 6, 9, 6, 1, 7, 6, 6, 7, 7, 1, 9, 7, 7, 3, 8, 2, 9, 8, 8, 7, 9, 4, 8, 0, 1, 0, 0, 7, 4, 1, 4, 0, 2, 0, 8, 2
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Examples

			0.017019023029037047059073089107127149173199227257289...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[16968017/999^3, 10, 111][[1]] (* or *)
    RealDigits[ Sum[10^(-3k -3)*(k^2 +k +17), {k, 0, 37}], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)

Formula

Sum_{k>=0} 10^(-3*k-3)*(k^2+k+17) = 16968017/999^3.
Showing 1-7 of 7 results.