cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059988 a(n) = (10^n - 1)^2.

Original entry on oeis.org

0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
Offset: 0

Views

Author

Henry Bottomley, Mar 07 2001

Keywords

Comments

From James D. Klein, Feb 05 2012: (Start)
The periods of the reciprocals of a(n) are the consecutive integers from 0 to 10^n-1, omitting the one integer 10^n-2, right-justified in field widths of size n.
E.g.:
1/81 = 0.012345679...
1/9801 = 0.000102030405060708091011...9799000102...
1/998001 = 0.000001002003004005...997999000001002... (End)
Sum of first 10^n - 1 odd numbers. - Arkadiusz Wesolowski, Jun 12 2013

Examples

			From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 81 = 9^2;
n=2: ................... 9801 = 99^2;
n=3: ................. 998001 = 999^2;
n=4: ............... 99980001 = 9999^2;
n=5: ............. 9999800001 = 99999^2;
n=6: ........... 999998000001 = 999999^2;
n=7: ......... 99999980000001 = 9999999^2;
n=8: ....... 9999999800000001 = 99999999^2;
n=9: ..... 999999998000000001 = 999999999^2. (End)
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 34.

Crossrefs

Programs

Formula

a(n) = 81*A002477(n) = A002283(n)^2 = (9*A002275(n))^2.
a(n) = {999... (n times)}^2 = {999... (n times), 000... (n times)} - {999... (n times)}. For example, 999^2 = 999000 - 999 = 998001. - Kyle D. Balliet, Mar 07 2009
a(n) = (A002283(n-1)*10 + 8) * 10^(n-1) + 1, for n>0. - Reinhard Zumkeller, May 31 2010
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 81*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
E.g.f.: (1 - 2*exp(9*x) + exp(99*x))*exp(x). (End)
Sum_{n>=1} 1/a(n) = (log(10)*(QPolyGamma(0, 1, 1/10) - log(10/9)) + QPolyGamma(1, 1, 1/10))/log(10)^2 = 0.012448721523422795191... . - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3). - Elmo R. Oliveira, Aug 02 2025

A272066 a(n) = (10^n-1)^3.

Original entry on oeis.org

0, 729, 970299, 997002999, 999700029999, 999970000299999, 999997000002999999, 999999700000029999999, 999999970000000299999999, 999999997000000002999999999, 999999999700000000029999999999, 999999999970000000000299999999999, 999999999997000000000002999999999999
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2016

Keywords

Comments

The sum of the digits of a(n) is divisible by 18. For example, 9^3 = 729 and 7 + 2 + 9 = 18 * 1.
Number of 9 in a(n) is 2*n-1 for n > 0. - Seiichi Manyama, Sep 18 2018

Examples

			From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 3 parts for n > 1.
-+--------------------------------------------
1|        72    9
2|   9   702   99
3|  99  7002  999
4| 999 70002 9999
(End)
		

Crossrefs

Programs

Formula

a(n) = A002283(n)^3.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 729*x*(1 + 220*x + 1000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)).
E.g.f.: (-1 + 3*exp(9*x) - 3*exp(99*x) + exp(999*x))*exp(x). (End)

A272067 a(n) = (10^n-1)^4.

Original entry on oeis.org

0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2016

Keywords

Comments

The sum of the digits of a(n) is divisible by 18. For example, 9^4 = 6561 and 6 + 5 + 6 + 1 = 18 * 1.
Number of 9 in a(n) is 2*n-2 for n > 0. - Seiichi Manyama, Sep 18 2018

Examples

			From _Seiichi Manyama_, Sep 18 2018: (Start)
n| a(n) can be divided into 4 parts for n > 1.
-+--------------------------------------------
1|        65        61
2|   9   605   9   601
3|  99  6005  99  6001
4| 999 60005 999 60001
(End)
		

Crossrefs

Programs

Formula

a(n) = A059988(n)^2 = A002283(n)^4.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)).
E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End)

A319358 a(n) = (10^n - 1)^9.

Original entry on oeis.org

0, 387420489, 913517247483640899, 991035916125874083964008999, 999100359916012598740083996400089999, 999910003599916001259987400083999640000899999, 999991000035999916000125999874000083999964000008999999
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2018

Keywords

Comments

Number of 9 in a(n) is 5*n-8 for n > 2.

Examples

			n|   a(n) can be divided into 9 parts for n > 3.
-+------------------------------------------------------
3|   99   1035   9   16125      874083   9   64008   999
4|  999  10035  99  160125  9  8740083  99  640008  9999
5| 9999 100035 999 1600125 99 87400083 999 6400008 99999
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(10^n - 1)^9 ; Array[a,  50, 0] (* Stefano Spezia, Sep 17 2018 *)
  • PARI
    a(n) = (10^n-1)^9;

Formula

a(n) = A002283(n)^9.
Showing 1-4 of 4 results.