A272067 a(n) = (10^n-1)^4.
0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001
Offset: 0
Examples
From _Seiichi Manyama_, Sep 18 2018: (Start) n| a(n) can be divided into 4 parts for n > 1. -+-------------------------------------------- 1| 65 61 2| 9 605 9 601 3| 99 6005 99 6001 4| 999 60005 999 60001 (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (11111,-11222110,1122211000,-11111000000,10000000000).
Programs
-
Magma
[(10^n-1)^4 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016
-
Maple
A272067:=n->(10^n-1)^4: seq(A272067(n), n=0..15); # Wesley Ivan Hurt, Apr 19 2016
-
Mathematica
(10^Range[0, 10] - 1)^4 (* Wesley Ivan Hurt, Apr 19 2016 *)
-
PARI
a(n) = (10^n-1)^4; \\ Michel Marcus, Apr 19 2016
-
Ruby
(0..n).each{|i| p ('9' * i).to_i ** 4}
Formula
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)).
E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End)
Comments