cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A272214 Square array read by antidiagonals upwards in which T(n,k) is the product of the n-th prime and the sum of the divisors of k, n >= 1, k >= 1.

Original entry on oeis.org

2, 3, 6, 5, 9, 8, 7, 15, 12, 14, 11, 21, 20, 21, 12, 13, 33, 28, 35, 18, 24, 17, 39, 44, 49, 30, 36, 16, 19, 51, 52, 77, 42, 60, 24, 30, 23, 57, 68, 91, 66, 84, 40, 45, 26, 29, 69, 76, 119, 78, 132, 56, 75, 39, 36, 31, 87, 92, 133, 102, 156, 88, 105, 65, 54, 24, 37, 93, 116, 161, 114, 204, 104, 165, 91, 90, 36, 56
Offset: 1

Views

Author

Omar E. Pol, Apr 28 2016

Keywords

Comments

From Omar E. Pol, Dec 21 2021: (Start)
Also triangle read by rows: T(n,j) = A000040(n-j+1)*A000203(j), 1 <= j <= n.
For a visualization of T(n,j) first consider a tower (a polycube) in which the terraces are the symmetric representation of sigma(j), for j = 1 to n, starting from the top, and the heights of the terraces are the first n prime numbers respectively starting from the base. Then T(n,j) can be represented with a set of A237271(j) right prisms of height A000040(n-j+1) since T(n,j) is also the total number of cubes that are exactly below the parts of the symmetric representation of sigma(j) in the tower.
The sum of the n-th row of triangle is A086718(n) equaling the volume of the tower whose largest side of the base is n and its total height is the n-th prime.
The tower is an member of the family of the stepped pyramids described in A245092 and of the towers described in A221529. That is an infinite family of symmetric polycubes whose volumes represent the convolution of A000203 with any other integer sequence. (End)

Examples

			The corner of the square array begins:
   2,  6,   8,  14,  12,  24,  16,  30,  26,  36, ...
   3,  9,  12,  21,  18,  36,  24,  45,  39,  54, ...
   5, 15,  20,  35,  30,  60,  40,  75,  65,  90, ...
   7, 21,  28,  49,  42,  84,  56, 105,  91, 126, ...
  11, 33,  44,  77,  66, 132,  88, 165, 143, 198, ...
  13, 39,  52,  91,  78, 156, 104, 195, 169, 234, ...
  17, 51,  68, 119, 102, 204, 136, 255, 221, 306, ...
  19, 57,  76, 133, 114, 228, 152, 285, 247, 342, ...
  23, 69,  92, 161, 138, 276, 184, 345, 299, 414, ...
  29, 87, 116, 203, 174, 348, 232, 435, 377, 522, ...
  ...
From _Omar E. Pol_, Dec 21 2021: (Start)
Written as a triangle the sequence begins:
   2;
   3,  6;
   5,  9,  8;
   7, 15, 12,  14;
  11, 21, 20,  21,  12;
  13, 33, 28,  35,  18,  24;
  17, 39, 44,  49,  30,  36, 16;
  19, 51, 52,  77,  42,  60, 24,  30;
  23, 57, 68,  91,  66,  84, 40,  45, 26;
  29, 69, 76, 119,  78, 132, 56,  75, 39, 36;
  31, 87, 92, 133, 102, 156, 88, 105, 65, 54, 24;
...
Row sums give A086718. (End)
		

Crossrefs

Rows 1-4 of the square array: A074400, A272027, A274535, A319527.
Columns 1-5 of the square array: A000040, A001748, A001749, A138636, A272470.
Main diagonal of the square array gives A272211.
Cf. A086718 (antidiagonal sums of the square array, row sums of the triangle).

Programs

  • Mathematica
    Table[Prime[#] DivisorSigma[1, k] &@(n - k + 1), {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Apr 28 2016 *)

Formula

T(n,k) = prime(n)*sigma(k) = A000040(n)*A000203(k), n >= 1, k >= 1.
T(n,k) = A272400(n+1,k).

A322366 Number of integers k in {0,1,...,n} such that k identical test tubes can be balanced in a centrifuge with n equally spaced holes.

Original entry on oeis.org

1, 0, 2, 2, 3, 2, 5, 2, 5, 4, 7, 2, 11, 2, 9, 8, 9, 2, 17, 2, 17, 10, 13, 2, 23, 6, 15, 10, 23, 2, 29, 2, 17, 14, 19, 12, 35, 2, 21, 16, 37, 2, 41, 2, 35, 38, 25, 2, 47, 8, 47, 20, 41, 2, 53, 16, 51, 22, 31, 2, 59, 2, 33, 52, 33, 18, 65, 2, 53, 26, 67, 2, 71, 2, 39, 68, 59, 18, 77, 2, 77, 28, 43, 2, 83, 22, 45, 32, 79
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Comments

Numbers where a(n) + A000010(n) != n + 1: A102467. - Robert G. Wilson v, Aug 23 2021

Examples

			a(6) = |{0,2,3,4,6}| = 5.
a(9) = |{0,3,6,9}| = 4.
a(10) = |{0,2,4,5,6,8,10}| = 7.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local f, b; f, b:=
           map(i-> i[1], ifactors(n)[2]),
           proc(m, i) option remember; m=0 or i>0 and
            (b(m, i-1) or f[i]<=m and b(m-f[i], i))
           end; forget(b); (t-> add(
          `if`(b(j, t) and b(n-j, t), 1, 0), j=0..n))(nops(f))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    $RecursionLimit = 4096;
    a[1] = 0;
    a[n_] := a[n] = Module[{f, b}, f = FactorInteger[n][[All, 1]];
         b[m_, i_] := b[m, i] = m == 0 || i > 0 &&
         (b[m, i - 1] || f[[i]] <= m && b[m - f[[i]], i]);
         With[{t = Length[f]}, Sum[
         If[b[j, t] && b[n - j, t], 1, 0], {j, 0, n}]]];
    Table[a[n], {n, 0, 1000}] (* Jean-François Alcover, Dec 13 2018, after Alois P. Heinz, corrected and updated Aug 07 2021 *)
    f[n_] := Block[{c = 2, k = 2, p = First@# & /@ FactorInteger@ n}, While[k < n, If[ IntegerPartitions[k, All, p, 1] != {} && IntegerPartitions[n - k, All, p, 1] != {}, c++]; k++]; c]; f[0] = 1; f[1] = 0; Array[f, 75] (* Robert G. Wilson v, Aug 22 2021 *)

Formula

a(n) = |{ k : k and n-k can be written as a sum of prime factors of n }|.
a(n) = 2 <=> n is prime (A000040).
a(n) >= n-1 <=> n in {1,2,3,4} union { A008588 }.
a(n) = (n+4)/2 <=> n in { A100484 } minus { 4 }.
a(n) = (n+9)/3 <=> n in { A001748 } minus { 9 }.
a(n) = (n+25)/5 <=> n in { A001750 } minus { 25 }.
a(n) = (n+49)/7 <=> n in { A272470 } minus { 49 }.
a(n^2) = n+1 <=> n = 0 or n is prime <=> n in { A182986 }.
a(A001248(n)) = A008864(n).
a(n) is odd <=> n in { A163300 }.
a(n) is even <=> n in { A004280 }.

A309131 Triangle read by rows: T(n, k) = (n - k)*prime(1 + k), with 0 <= k < n.

Original entry on oeis.org

2, 4, 3, 6, 6, 5, 8, 9, 10, 7, 10, 12, 15, 14, 11, 12, 15, 20, 21, 22, 13, 14, 18, 25, 28, 33, 26, 17, 16, 21, 30, 35, 44, 39, 34, 19, 18, 24, 35, 42, 55, 52, 51, 38, 23, 20, 27, 40, 49, 66, 65, 68, 57, 46, 29, 22, 30, 45, 56, 77, 78, 85, 76, 69, 58, 31
Offset: 1

Views

Author

Stefano Spezia, Jul 14 2019

Keywords

Comments

T(n, k) is the k-superdiagonal sum of an n X n Toeplitz matrix M(n) whose first row consists of successive prime numbers prime(1), ..., prime(n).
The h-th subdiagonal of the triangle T gives the primes multiplied by (h + 1).
The k-th column of the triangle T gives the multiples of prime(1 + k).
Also array A(n, k) = n*prime(1 + k) read by ascending antidiagonals, with 0 <= k < n. - Michel Marcus, Jul 15 2019

Examples

			The triangle T(n, k) begins:
---+-----------------------------------------------------
n\k|    0     1     2     3     4     5     6     7     8
---+-----------------------------------------------------
1  |    2
2  |    4     3
3  |    6     6     5
4  |    8     9    10     7
5  |   10    12    15    14    11
6  |   12    15    20    21    22    13
7  |   14    18    25    28    33    26    17
8  |   16    21    30    35    44    39    34    19
9  |   18    24    35    42    55    52    51    38    23
...
For n = 3 the matrix M(3) is
          2,         3,         5
    M_{2,1},         2,         3
    M_{3,1},   M_{3,2},         2
and therefore T(3, 0) = 2 + 2 + 2 = 6, T(3, 1) = 3 + 3 = 6, and T(3, 2) = 5.
		

Crossrefs

Cf. A000040: diagonal; A001747: 1st subdiagonal; A001748: 2nd subdiagonal; A001749: 3rd subdiagonal; A001750: 4th subdiagonal; A005843: 0th column; A008585: 1st column; A008587: 2nd column; A008589: 3rd column; A008593: 4th column; A008595: 5th column; A008599: 6th column; A008601: 7th column; A014148: row sums; A138636: 5th subdiagonal; A272470: 6th subdiagonal.

Programs

  • Magma
    [[(n-k)*NthPrime(1+k): k in [0..n-1]]: n in [1..11]]; // triangle output
    
  • Maple
    a:=(n, k)->(n-k)*ithprime(1+k): seq(seq(a(n, k), k=0..n-1), n=1..11);
  • Mathematica
    Flatten[Table[(n-k)*Prime[1+k],{n,1,11},{k,0,n-1}]]
  • PARI
    T(n, k) = (n - k)*prime(1 + k);
    tabl(nn) = for(n=1, nn, for(k=0, n-1, print1(T(n, k), ", ")); print); \\ triangle output
    
  • Sage
    [[(n-k)*Primes().unrank(k) for k in (0..n-1)] for n in (1..11)] # triangle output

Formula

T(n, k) = A025581(n, k)*A000040(1 + k).

A363473 Triangle read by rows: T(n, k) = k * prime(n - k + A061395(k)) for 1 < k <= n, and T(n, 1) = A008578(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 10, 15, 8, 7, 14, 21, 12, 25, 11, 22, 33, 20, 35, 18, 13, 26, 39, 28, 55, 30, 49, 17, 34, 51, 44, 65, 42, 77, 16, 19, 38, 57, 52, 85, 66, 91, 24, 27, 23, 46, 69, 68, 95, 78, 119, 40, 45, 50, 29, 58, 87, 76, 115, 102, 133, 56, 63, 70, 121, 31, 62, 93, 92, 145, 114, 161, 88, 99, 110, 143, 36
Offset: 1

Views

Author

Werner Schulte, Jan 05 2024

Keywords

Comments

Conjecture: this is a permutation of the natural numbers.
Generalized conjecture: Let T(n, k) = b(k) * prime(n - k + A061395(b(k))) for 1 < k <= n, and T(n, 1) = A008578(n), where b(n), n > 0, is a permutation of the natural numbers with b(1) = 1, then T(n, k), read by rows, is a permutation of the natural numbers.

Examples

			Triangle begins:
n\k :   1    2    3    4    5    6    7    8    9   10   11   12   13
=====================================================================
 1  :   1
 2  :   2    4
 3  :   3    6    9
 4  :   5   10   15    8
 5  :   7   14   21   12   25
 6  :  11   22   33   20   35   18
 7  :  13   26   39   28   55   30   49
 8  :  17   34   51   44   65   42   77   16
 9  :  19   38   57   52   85   66   91   24   27
10  :  23   46   69   68   95   78  119   40   45   50
11  :  29   58   87   76  115  102  133   56   63   70  121
12  :  31   62   93   92  145  114  161   88   99  110  143   36
13  :  37   74  111  116  155  138  203  104  117  130  187   60  169
etc.
		

Crossrefs

Programs

  • PARI
    T(n, k) = { if(k==1, if(n==1, 1, prime(n-1)), i=floor((k+1)/2);
                while(k % prime(i) != 0, i=i-1); k*prime(n-k+i)) }
    
  • SageMath
    def prime(n): return sloane.A000040(n)
    def A061395(n): return prime_pi(factor(n)[-1][0]) if n > 1 else 0
    def T(n, k):
         if k == 1: return prime(n - 1) if n > 1 else 1
         return k * prime(n - k + A061395(k))
    for n in range(1, 11): print([T(n,k) for k in range(1, n+1)])
    # Peter Luschny, Jan 07 2024

Formula

T(n, n) = A253560(n) for n > 0.
T(n, 1) = A008578(n) for n > 0.
T(n, 2) = A001747(n) for n > 1.
T(n, 3) = A112773(n) for n > 2.
T(n, 4) = A001749(n-3) for n > 3.
T(n, 5) = A001750(n-2) for n > 4.
T(n, 6) = A138636(n-4) for n > 5.
T(n, 7) = A272470(n-3) for n > 6.
Showing 1-4 of 4 results.