cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272671 Numbers k such that the decimal number 1k is a square.

Original entry on oeis.org

6, 21, 44, 69, 96, 156, 225, 296, 369, 444, 521, 600, 681, 764, 849, 936, 1025, 1236, 1449, 1664, 1881, 2100, 2321, 2544, 2769, 2996, 3225, 3456, 3689, 3924, 4161, 4400, 4641, 4884, 5129, 5376, 5625, 5876, 6129, 6384, 6641, 6900, 7161, 7424, 7689, 7956, 8225, 8496, 8769, 9044, 9321, 9600
Offset: 1

Views

Author

Keywords

Examples

			44 is a member because 144 = 12^2 is a square.
0 is not a member because 10 is not a square.
		

Crossrefs

Cf. A265432, A272672, A045855 (squares beginning with 1), A272684, A272685.

Programs

  • Magma
    [n: n in [1..10000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(1)))]; // Marius A. Burtea, Mar 21 2019
    
  • Maple
    t1:=[];
    for k from 1 to 20000 do
    if issqr(k+10^length(k)) then t1:=[op(t1),k]; fi;
    od;
    t1;
  • Mathematica
    Flatten[n /. Solve[10^# + n == a^2 && 10^(# - 1) <= n < 10^# && a > 0, {n, a}, Integers] & /@ Range[3]] (* Davin Park, Feb 05 2017 *)
    Select[Range[10000],IntegerQ[Sqrt[10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    isok(n) = issquare(eval(concat(1, Str(n)))); \\ Michel Marcus, Mar 21 2019
    
  • Python
    from sympy.ntheory.primetest import is_square
    def ok(n): return is_square(int('1'+str(n)))
    print(list(filter(ok, range(9601)))) # Michael S. Branicky, Jun 21 2021

Extensions

Extended by Davin Park, Feb 05 2017