cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A272684 Terms of A272671 which are not a power of 100 times an earlier term of A272671.

Original entry on oeis.org

6, 21, 44, 69, 96, 156, 225, 296, 369, 444, 521, 681, 764, 849, 936, 1025, 1236, 1449, 1664, 1881, 2321, 2544, 2769, 2996, 3225, 3456, 3689, 3924, 4161, 4641, 4884, 5129, 5376, 5625, 5876, 6129, 6384, 6641, 7161, 7424, 7689, 7956, 8225, 8496, 8769, 9044, 9321, 9881
Offset: 1

Views

Author

Keywords

Comments

These are the only terms in A272671 that are candidates for terms of A265432.

Crossrefs

A273369 a(n) is the smallest m such that A265432(m) = A272671(n), or -1 if no such m exists.

Original entry on oeis.org

1, 15, 14, 13, 12, 217, 0, 215, 45, 213, 44, -1, 43, 209, 42, 207, 2, 573, 1327, 572, 130, -1, 185, 570, 1492, 569, 78, 568, 128, 567, 1318, -1, 1498, 565, 188, 564, 10, 563, 1312, 562, 1504, -1, 1309, 560, 1507, 693, 74, 558, 1510, 557, 192
Offset: 1

Views

Author

Keywords

Comments

Every entry in A265432 appears in A272671.
a(n) = -1 whenever A272671(n) ends in 0, because every such entry ends in 00 and anytime concat(1,k,00) and concat(n,k,00) are both perfect squares, concat(1,k) and concat(n,k) are also both perfect squares.
Does every term in A272671 that does not end in 0 appear in A265432?
See A272685 for a version that takes into account the fact that terms in A272671 ending in 0 cannot appear in A265432.

Examples

			A272671(6) = 156. A265432(217) = 156, but A265432(m) does not equal 156 for any m < 217. So a(6) = 217.
		

Crossrefs

See A272685 for another version.

A265432 a(n) = smallest k with concat(1,k) and concat(n,k) both square numbers.

Original entry on oeis.org

225, 6, 1025, 6, 225, 9937257544619140625, 80625, 225, 19025, 14797831640625, 5625, 89450791534674072265625, 96, 69, 44, 21, 1993672119140625, 2002541101386962890625, 225, 6, 8734765625, 99758030615478515625, 5625, 863225, 80625, 6, 40625, 225, 890625, 158764150390625
Offset: 0

Views

Author

Keywords

Comments

k must be a positive integer (and of course cannot begin with 0). - N. J. A. Sloane, May 19 2016
Every term is a member of A272671, by definition. Certainly every term of A272671 which is a power of 100 times an earlier term of A272671 (such as 600, 2100, 4400) will not appear, by the "smallest k" condition. Does every other term of A272671 (that is, the terms of A272684) eventually appear? See A272685 and A273369 for the first appearance of these terms. - Nathan Fox, Brooke Logan, and N. J. A. Sloane, May 23 2016

Examples

			a(0) = 225 because 1225 is a square as is (0)225. (In other words, 225 is the first term in A272672 that is itself a square). - _N. J. A. Sloane_, May 21 2016
a(2) = 1025 because concat(1,1025) = 11025 = 105^2 and concat(2,1025) = 21025 = 145^2.
		

Crossrefs

Cf. A045855, A272671, A018796, A272684, A272685 and A273369 (smallest inverse).
For records see A272674, A272675.
For square roots referred to in definition see A272682, A272683.
A018851 is a simpler sequence in the same spirit.

Programs

  • Mathematica
    << Combinatorica`
    A265432[0] = 225;
    A265432[1] = 6;
    A265432[n_] := Block[{x = {-1, 1, 0, 1}[[Mod[n, 4, 1]]], d = Infinity, l, i}, While[d > Sqrt[10.0^(x - 1)] (Sqrt[10.0 n + 1] - Sqrt[11.0]), x++; d = Infinity; l = Divisors[((n - 1) 10^x)/4]; i = BinarySearch[l, 0.5 Sqrt[(n + 1) 10.0^x - 1] - 0.5 Sqrt[2*10.0^x - 1]]; If[i <= Length@l, d = 2*l[[i + 1/2]]]]; (((n - 1) 10^x - d^2)/(2 d))^2 - 10^x] (* Davin Park, Apr 11 2017 *)

A273363 Numbers m such that the decimal number concat(8,m) is a square.

Original entry on oeis.org

1, 41, 100, 281, 464, 649, 836, 1225, 1796, 2369, 2944, 3521, 4100, 4681, 5264, 5849, 6436, 7025, 7616, 8209, 8804, 9401, 10000, 11801, 13604, 15409, 17216, 19025, 20836, 22649, 24464, 26281, 28100, 29921, 31744, 33569, 35396, 37225
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in [9, sqrt(90)) * sqrt(10)^k without the leading 8 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			41 is a member because 841 = 29^2 is a square.
0 is not a member because 80 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(8)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+8*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[45000], IntegerQ[Sqrt[8 10^IntegerLength[#] + #]] &] (* Vincenzo Librandi, Feb 20 2020 *)
  • PARI
    do(n)=my(v=List(),t); for(d=0,n, for(s=sqrtint(81*10^d-1)+1,sqrtint(90*10^d-1), listput(v,s^2-10^d*80))); Vec(v) \\ Charles R Greathouse IV, Nov 26 2016
    

A273357 Numbers n such that the decimal number concat(2,n) is a square.

Original entry on oeis.org

5, 25, 56, 89, 116, 209, 304, 401, 500, 601, 704, 809, 916, 1025, 1316, 1609, 1904, 2201, 2500, 2801, 3104, 3409, 3716, 4025, 4336, 4649, 4964, 5281, 5600, 5921, 6244, 6569, 6896, 7225, 7556, 7889, 8224, 8561, 8900, 9241, 9584, 9929, 10681
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(21), sqrt(30)) * sqrt(10)^k without the leading 2 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			56 is a member because 256 = 16^2 is a square.
0 is not a member because 20 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..15000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(2)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 20000 do
    if issqr(k+2*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;

A273358 Numbers n such that the decimal number concat(3,n) is a square.

Original entry on oeis.org

6, 24, 61, 136, 249, 364, 481, 600, 721, 844, 969, 1329, 1684, 2041, 2400, 2761, 3124, 3489, 3856, 4225, 4596, 4969, 5344, 5721, 6100, 6481, 6864, 7249, 7636, 8025, 8416, 8809, 9204, 9601, 10249, 11364, 12481, 13600, 14721, 15844, 16969, 18096
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(31), sqrt(40)) * sqrt(10)^k without the leading 3 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			61 is a member because 361 = 19^2 is a square.
0 is not a member because 30 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(3)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 20000 do
    if issqr(k+3*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;

A273359 Numbers k such that the decimal number concat(4,k) is a square.

Original entry on oeis.org

9, 41, 84, 225, 356, 489, 624, 761, 900, 1209, 1616, 2025, 2436, 2849, 3264, 3681, 4100, 4521, 4944, 5369, 5796, 6225, 6656, 7089, 7524, 7961, 8400, 8841, 9284, 9729, 10881, 12164, 13449, 14736, 16025, 17316, 18609, 19904, 21201, 22500
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(41), sqrt(50)) * sqrt(10)^k without the leading 4 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			84 is a member because 484 = 22^2 is a square.
0 is not a member because 40 is not a square.
sqrt(410) < 21 AND 22 < sqrt(500) < 23 so 21^2 = 441 and 22^2 = 484 give 41 and 84 respectively.
64 < sqrt(4100) < 65 AND 70 < sqrt(5000) < 71 so 65^2 = 4225, 66^2 = 4356, ..., 70^2 = 4900 give 225, 356, ..., 900 respectively. - _David A. Corneth_, May 20 2016
		

Crossrefs

Programs

  • Magma
    [n: n in [1..50000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(4)))]; // Vincenzo Librandi, Feb 20 2020
    
  • Maple
    t1:=[];
    for k from 1 to 30000 do
    if issqr(k+4*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[45000], IntegerQ[Sqrt[4 10^IntegerLength[#] + #]] &] (* Vincenzo Librandi, Feb 20 2020 *)
    DeleteCases[(FromDigits[Drop[IntegerDigits[#], 1]]) & /@ Select[Range[3, 500]^2, IntegerDigits[#][[1]] == 4 && IntegerDigits[#][[2]] != 0 &], 0] (* Alonso del Arte, Feb 20 2020 *)
  • PARI
    a(n) = {my(k=1,t=0); while(n>k, n-=k; t++; k=floor(sqrt(50)*sqrt(10^t))- ceil(sqrt(41)*sqrt(10^t))+1);(ceil(sqrt(41)*sqrt(10^t))+n-1)^2%(40*10^t)} \\ David A. Corneth, May 20 2016
    
  • Scala
    (3 to 500).map(n => n * n).filter(n => n.toString.startsWith("4") && !n.toString.startsWith("40")).map(n => Integer.parseInt(n.toString.substring(1))) // Alonso del Arte, Feb 20 2020

A273360 Numbers n such that the decimal number concat(5,n) is a square.

Original entry on oeis.org

29, 76, 184, 329, 476, 625, 776, 929, 1076, 1529, 1984, 2441, 2900, 3361, 3824, 4289, 4756, 5225, 5696, 6169, 6644, 7121, 7600, 8081, 8564, 9049, 9536, 11225, 12656, 14089, 15524, 16961, 18400, 19841, 21284, 22729, 24176, 25625, 27076
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(51), sqrt(60)) * sqrt(10)^k without the leading 5 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			76 is a member because 576 = 24^2 is a square.
0 is not a member because 50 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(5)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+5*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[30000],IntegerQ[Sqrt[5*10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Jan 01 2019 *)

A273361 Numbers n such that the decimal number concat(6,n) is a square.

Original entry on oeis.org

4, 25, 76, 241, 400, 561, 724, 889, 1009, 1504, 2001, 2500, 3001, 3504, 4009, 4516, 5025, 5536, 6049, 6564, 7081, 7600, 8121, 8644, 9169, 9696, 11524, 13089, 14656, 16225, 17796, 19369, 20944, 22521, 24100, 25681, 27264, 28849, 30436
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(61), sqrt(70)) * sqrt(10)^k without the leading 6 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			76 is a member because 676 = 26^2 is a square.
0 is not a member because 60 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(6)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+6*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[31000],IntegerQ[Sqrt[FromDigits[Join[{6}, IntegerDigits[ #]]]]]&] (* Harvey P. Dale, Feb 09 2019 *)

A273362 Numbers n such that the decimal number concat(7,n) is a square.

Original entry on oeis.org

29, 84, 225, 396, 569, 744, 921, 1289, 1824, 2361, 2900, 3441, 3984, 4529, 5076, 5625, 6176, 6729, 7284, 7841, 8400, 8961, 9524, 10649, 12336, 14025, 15716, 17409, 19104, 20801, 22500, 24201, 25904, 27609, 29316, 31025, 32736, 34449
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(71), sqrt(80)) * sqrt(10)^k without the leading 7 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			84 is a member because 784 = 28^2 is a square.
0 is not a member because 70 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(7)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+7*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[35000],IntegerQ[Sqrt[7*10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Feb 10 2019 *)
Showing 1-10 of 14 results. Next