cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A273363 Numbers m such that the decimal number concat(8,m) is a square.

Original entry on oeis.org

1, 41, 100, 281, 464, 649, 836, 1225, 1796, 2369, 2944, 3521, 4100, 4681, 5264, 5849, 6436, 7025, 7616, 8209, 8804, 9401, 10000, 11801, 13604, 15409, 17216, 19025, 20836, 22649, 24464, 26281, 28100, 29921, 31744, 33569, 35396, 37225
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in [9, sqrt(90)) * sqrt(10)^k without the leading 8 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			41 is a member because 841 = 29^2 is a square.
0 is not a member because 80 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(8)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+8*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[45000], IntegerQ[Sqrt[8 10^IntegerLength[#] + #]] &] (* Vincenzo Librandi, Feb 20 2020 *)
  • PARI
    do(n)=my(v=List(),t); for(d=0,n, for(s=sqrtint(81*10^d-1)+1,sqrtint(90*10^d-1), listput(v,s^2-10^d*80))); Vec(v) \\ Charles R Greathouse IV, Nov 26 2016
    

A273358 Numbers n such that the decimal number concat(3,n) is a square.

Original entry on oeis.org

6, 24, 61, 136, 249, 364, 481, 600, 721, 844, 969, 1329, 1684, 2041, 2400, 2761, 3124, 3489, 3856, 4225, 4596, 4969, 5344, 5721, 6100, 6481, 6864, 7249, 7636, 8025, 8416, 8809, 9204, 9601, 10249, 11364, 12481, 13600, 14721, 15844, 16969, 18096
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(31), sqrt(40)) * sqrt(10)^k without the leading 3 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			61 is a member because 361 = 19^2 is a square.
0 is not a member because 30 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(3)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 20000 do
    if issqr(k+3*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;

A273359 Numbers k such that the decimal number concat(4,k) is a square.

Original entry on oeis.org

9, 41, 84, 225, 356, 489, 624, 761, 900, 1209, 1616, 2025, 2436, 2849, 3264, 3681, 4100, 4521, 4944, 5369, 5796, 6225, 6656, 7089, 7524, 7961, 8400, 8841, 9284, 9729, 10881, 12164, 13449, 14736, 16025, 17316, 18609, 19904, 21201, 22500
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(41), sqrt(50)) * sqrt(10)^k without the leading 4 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			84 is a member because 484 = 22^2 is a square.
0 is not a member because 40 is not a square.
sqrt(410) < 21 AND 22 < sqrt(500) < 23 so 21^2 = 441 and 22^2 = 484 give 41 and 84 respectively.
64 < sqrt(4100) < 65 AND 70 < sqrt(5000) < 71 so 65^2 = 4225, 66^2 = 4356, ..., 70^2 = 4900 give 225, 356, ..., 900 respectively. - _David A. Corneth_, May 20 2016
		

Crossrefs

Programs

  • Magma
    [n: n in [1..50000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(4)))]; // Vincenzo Librandi, Feb 20 2020
    
  • Maple
    t1:=[];
    for k from 1 to 30000 do
    if issqr(k+4*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[45000], IntegerQ[Sqrt[4 10^IntegerLength[#] + #]] &] (* Vincenzo Librandi, Feb 20 2020 *)
    DeleteCases[(FromDigits[Drop[IntegerDigits[#], 1]]) & /@ Select[Range[3, 500]^2, IntegerDigits[#][[1]] == 4 && IntegerDigits[#][[2]] != 0 &], 0] (* Alonso del Arte, Feb 20 2020 *)
  • PARI
    a(n) = {my(k=1,t=0); while(n>k, n-=k; t++; k=floor(sqrt(50)*sqrt(10^t))- ceil(sqrt(41)*sqrt(10^t))+1);(ceil(sqrt(41)*sqrt(10^t))+n-1)^2%(40*10^t)} \\ David A. Corneth, May 20 2016
    
  • Scala
    (3 to 500).map(n => n * n).filter(n => n.toString.startsWith("4") && !n.toString.startsWith("40")).map(n => Integer.parseInt(n.toString.substring(1))) // Alonso del Arte, Feb 20 2020

A273360 Numbers n such that the decimal number concat(5,n) is a square.

Original entry on oeis.org

29, 76, 184, 329, 476, 625, 776, 929, 1076, 1529, 1984, 2441, 2900, 3361, 3824, 4289, 4756, 5225, 5696, 6169, 6644, 7121, 7600, 8081, 8564, 9049, 9536, 11225, 12656, 14089, 15524, 16961, 18400, 19841, 21284, 22729, 24176, 25625, 27076
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(51), sqrt(60)) * sqrt(10)^k without the leading 5 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			76 is a member because 576 = 24^2 is a square.
0 is not a member because 50 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(5)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+5*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[30000],IntegerQ[Sqrt[5*10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Jan 01 2019 *)

A273361 Numbers n such that the decimal number concat(6,n) is a square.

Original entry on oeis.org

4, 25, 76, 241, 400, 561, 724, 889, 1009, 1504, 2001, 2500, 3001, 3504, 4009, 4516, 5025, 5536, 6049, 6564, 7081, 7600, 8121, 8644, 9169, 9696, 11524, 13089, 14656, 16225, 17796, 19369, 20944, 22521, 24100, 25681, 27264, 28849, 30436
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(61), sqrt(70)) * sqrt(10)^k without the leading 6 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			76 is a member because 676 = 26^2 is a square.
0 is not a member because 60 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(6)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+6*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[31000],IntegerQ[Sqrt[FromDigits[Join[{6}, IntegerDigits[ #]]]]]&] (* Harvey P. Dale, Feb 09 2019 *)

A273362 Numbers n such that the decimal number concat(7,n) is a square.

Original entry on oeis.org

29, 84, 225, 396, 569, 744, 921, 1289, 1824, 2361, 2900, 3441, 3984, 4529, 5076, 5625, 6176, 6729, 7284, 7841, 8400, 8961, 9524, 10649, 12336, 14025, 15716, 17409, 19104, 20801, 22500, 24201, 25904, 27609, 29316, 31025, 32736, 34449
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(71), sqrt(80)) * sqrt(10)^k without the leading 7 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			84 is a member because 784 = 28^2 is a square.
0 is not a member because 70 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..20000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(7)))]; // Marius A. Burtea, Mar 21 2019
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+7*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[35000],IntegerQ[Sqrt[7*10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Feb 10 2019 *)

A273364 Numbers n such that the decimal number concat(9,n) is a square.

Original entry on oeis.org

61, 216, 409, 604, 801, 1204, 1809, 2416, 3025, 3636, 4249, 4864, 5481, 6100, 6721, 7344, 7969, 8596, 9225, 9856, 10116, 12025, 13936, 15849, 17764, 19681, 21600, 23521, 25444, 27369, 29296, 31225, 33156, 35089, 37024, 38961, 40900, 42841, 44784
Offset: 1

Views

Author

Keywords

Comments

Elements are squares of integers in (sqrt(91), 10) * sqrt(10)^k without the leading 9 elements for nonnegative k. - David A. Corneth, May 20 2016

Examples

			61 is a member because 961 = 31^2 is a square.
0 is not a member because 90 is not a square.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..50000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(9)))]; // Vincenzo Librandi, Feb 20 2020
  • Maple
    t1:=[];
    for k from 1 to 50000 do
    if issqr(k+9*10^length(k)) then t1:=[op(t1), k]; fi;
    od;
    t1;
  • Mathematica
    Select[Range[45000],IntegerQ[Sqrt[9*10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Feb 19 2020 *)
Showing 1-7 of 7 results.